TY  - JOUR
AU  - Duchamp, M.
AU  - Hu, H.
AU  - Lam, Y. M.
AU  - Dunin-Borkowski, R. E.
AU  - Boothroyd, C. B.
TI  - STEM electron beam-induced current measurements of organic-inorganic perovskite solar cells
JO  - Ultramicroscopy
VL  - 217
SN  - 0304-3991
CY  - Amsterdam
PB  - Elsevier Science
M1  - FZJ-2020-02729
SP  - 113047 -
PY  - 2020
AB  - We describe a new approach for preparing organic-inorganic perovskite solar cells for electron beam-induced current (EBIC) measurements in plan-view geometry. This method substantially reduces sample preparation artefacts, provides good electrical contact and keeps the preparation steps as close as possible to those for real devices. Our EBIC images were acquired simultaneously with annular dark-field scanning transmission electron microscopy images using a home-made highly sensitive EBIC amplifier. High-angle annular dark-field images and energy dispersive X-ray maps were recorded from the same area immediately afterwards. This allowed the EBIC contrast to be correlated with regions containing N and a deficiency of O. The EBIC contrast was also found to be similar to secondary electron contrast recorded with a scanning electron microscope. By identifying the generation and absorption electron processes, we determine that EBIC cannot be separated from the secondary electron and absorbed currents. This means that careful analysis needs to be performed before conclusions can be made on the origin of the current measured across p-n or p-i-n junctions.
LB  - PUB:(DE-HGF)16
C6  - pmid:32623204
UR  - <Go to ISI:>//WOS:000588011200001
DO  - DOI:10.1016/j.ultramic.2020.113047
UR  - https://juser.fz-juelich.de/record/878260
ER  -