Home > Publications database > STEM electron beam-induced current measurements of organic-inorganic perovskite solar cells |
Journal Article | FZJ-2020-02729 |
; ; ; ;
2020
Elsevier Science
Amsterdam
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/25954 doi:10.1016/j.ultramic.2020.113047
Abstract: We describe a new approach for preparing organic-inorganic perovskite solar cells for electron beam-induced current (EBIC) measurements in plan-view geometry. This method substantially reduces sample preparation artefacts, provides good electrical contact and keeps the preparation steps as close as possible to those for real devices. Our EBIC images were acquired simultaneously with annular dark-field scanning transmission electron microscopy images using a home-made highly sensitive EBIC amplifier. High-angle annular dark-field images and energy dispersive X-ray maps were recorded from the same area immediately afterwards. This allowed the EBIC contrast to be correlated with regions containing N and a deficiency of O. The EBIC contrast was also found to be similar to secondary electron contrast recorded with a scanning electron microscope. By identifying the generation and absorption electron processes, we determine that EBIC cannot be separated from the secondary electron and absorbed currents. This means that careful analysis needs to be performed before conclusions can be made on the origin of the current measured across p-n or p-i-n junctions.
![]() |
The record appears in these collections: |