000878278 001__ 878278
000878278 005__ 20210130005529.0
000878278 0247_ $$2doi$$a10.1063/1.5092945
000878278 0247_ $$2ISSN$$a0003-6951
000878278 0247_ $$2ISSN$$a1077-3118
000878278 0247_ $$2ISSN$$a1520-8842
000878278 0247_ $$2Handle$$a2128/25449
000878278 0247_ $$2WOS$$aWOS:000464450200022
000878278 037__ $$aFZJ-2020-02741
000878278 041__ $$aEnglish
000878278 082__ $$a530
000878278 1001_ $$00000-0003-0285-0511$$aJannis, Daen$$b0$$eCorresponding author
000878278 245__ $$aSpectroscopic coincidence experiments in transmission electron microscopy
000878278 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2019
000878278 3367_ $$2DRIVER$$aarticle
000878278 3367_ $$2DataCite$$aOutput Types/Journal article
000878278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602162774_20222
000878278 3367_ $$2BibTeX$$aARTICLE
000878278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878278 3367_ $$00$$2EndNote$$aJournal Article
000878278 520__ $$aWe demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations of elements need to be detected in a matrix of other elements.
000878278 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878278 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000878278 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x2
000878278 588__ $$aDataset connected to CrossRef
000878278 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b1
000878278 7001_ $$00000-0002-8004-4593$$aBéché, Armand$$b2
000878278 7001_ $$0P:(DE-HGF)0$$aOelsner, Andreas$$b3
000878278 7001_ $$00000-0002-7151-8101$$aVerbeeck, Johan$$b4
000878278 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5092945$$gVol. 114, no. 14, p. 143101 -$$n14$$p143101$$tApplied physics letters$$v114$$x1077-3118$$y2019
000878278 8564_ $$uhttps://juser.fz-juelich.de/record/878278/files/1.5092945.pdf$$yPublished on 2019-04-08. Available in OpenAccess from 2020-04-08.
000878278 8564_ $$uhttps://juser.fz-juelich.de/record/878278/files/1.5092945.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-08. Available in OpenAccess from 2020-04-08.
000878278 909CO $$ooai:juser.fz-juelich.de:878278$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b1$$kFZJ
000878278 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878278 9141_ $$y2020
000878278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2018$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger
000878278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000878278 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000878278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000878278 920__ $$lyes
000878278 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878278 980__ $$ajournal
000878278 980__ $$aVDB
000878278 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878278 980__ $$aUNRESTRICTED
000878278 9801_ $$aFullTexts