001     878278
005     20210130005529.0
024 7 _ |a 10.1063/1.5092945
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/25449
|2 Handle
024 7 _ |a WOS:000464450200022
|2 WOS
037 _ _ |a FZJ-2020-02741
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Jannis, Daen
|0 0000-0003-0285-0511
|b 0
|e Corresponding author
245 _ _ |a Spectroscopic coincidence experiments in transmission electron microscopy
260 _ _ |a Melville, NY
|c 2019
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602162774_20222
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations of elements need to be detected in a matrix of other elements.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)
|0 G:(DE-HGF)VH-NG-1317
|c VH-NG-1317
|x 1
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 1
700 1 _ |a Béché, Armand
|0 0000-0002-8004-4593
|b 2
700 1 _ |a Oelsner, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Verbeeck, Johan
|0 0000-0002-7151-8101
|b 4
773 _ _ |a 10.1063/1.5092945
|g Vol. 114, no. 14, p. 143101 -
|0 PERI:(DE-600)1469436-0
|n 14
|p 143101
|t Applied physics letters
|v 114
|y 2019
|x 1077-3118
856 4 _ |u https://juser.fz-juelich.de/record/878278/files/1.5092945.pdf
|y Published on 2019-04-08. Available in OpenAccess from 2020-04-08.
856 4 _ |u https://juser.fz-juelich.de/record/878278/files/1.5092945.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-04-08. Available in OpenAccess from 2020-04-08.
909 C O |o oai:juser.fz-juelich.de:878278
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165314
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2018
|d 2020-01-14
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21