000878310 001__ 878310
000878310 005__ 20240711092303.0
000878310 0247_ $$2doi$$a10.3390/app10165556
000878310 0247_ $$2Handle$$a2128/25484
000878310 0247_ $$2WOS$$aWOS:000564696900001
000878310 037__ $$aFZJ-2020-02770
000878310 082__ $$a600
000878310 1001_ $$0P:(DE-Juel1)161596$$aFischer, Torsten$$b0$$eCorresponding author$$ufzj
000878310 245__ $$aFatigue Cracking of Additively Manufactured Materials—Process and Material Perspectives
000878310 260__ $$aBasel$$bMDPI$$c2020
000878310 3367_ $$2DRIVER$$aarticle
000878310 3367_ $$2DataCite$$aOutput Types/Journal article
000878310 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597239018_10913
000878310 3367_ $$2BibTeX$$aARTICLE
000878310 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878310 3367_ $$00$$2EndNote$$aJournal Article
000878310 520__ $$aStrong efforts are made internationally to optimize the process control of laser additive manufacturing processes. For this purpose, advanced detectors and monitoring software are being developed to control the quality of production. However, commercial suppliers of metal powders and part manufacturers are essentially focused on well-established materials. This article demonstrates the potential of optimized process control. Furthermore, we outline the development of a new high temperature structural steel, tailored to best utilize the advantages of additive manufacturing techniques. In this context, the impact of production-induced porosity on fatigue strength of austenitic 316L is presented. Additionally, we discuss the first conceptual results of a novel ferritic steel, named HiperFer (High Performance Ferrite), which was designed for increased fatigue strength. This ferritic, Laves phase-strengthened, stainless steel could be used for a wide range of structural components in power and (petro)chemical engineering at maximum temperatures ranging from about 580 to 650 °C. This material benefits from in situ heat treatment and counteracts process-related defects by “reactive” crack obstruction mechanisms, hampering both crack initiation and crack propagation. In this way, increased fatigue resistance and safety can be achieved.
000878310 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878310 588__ $$aDataset connected to CrossRef
000878310 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b1$$ufzj
000878310 7001_ $$0P:(DE-HGF)0$$aRieck, Detlef$$b2
000878310 7001_ $$0P:(DE-HGF)0$$aSchulz, Axel$$b3
000878310 7001_ $$0P:(DE-HGF)0$$aTrieglaff, Ralf$$b4
000878310 7001_ $$0P:(DE-HGF)0$$aWilms, Markus Benjamin$$b5
000878310 773__ $$0PERI:(DE-600)2704225-X$$a10.3390/app10165556$$gVol. 10, no. 16, p. 5556 -$$n16$$p5556 -$$tApplied Sciences$$v10$$x2076-3417$$y2020
000878310 8564_ $$uhttps://juser.fz-juelich.de/record/878310/files/Invoice_applsci-893060.pdf
000878310 8564_ $$uhttps://juser.fz-juelich.de/record/878310/files/Invoice_applsci-893060.pdf?subformat=pdfa$$xpdfa
000878310 8564_ $$uhttps://juser.fz-juelich.de/record/878310/files/applsci-10-05556.pdf$$yOpenAccess
000878310 8564_ $$uhttps://juser.fz-juelich.de/record/878310/files/applsci-10-05556.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878310 8767_ $$8applsci-893060$$92020-08-05$$d2020-08-10$$eAPC$$jZahlung erfolgt$$papplsci-893060$$zBelegnr. 1200155409
000878310 909CO $$ooai:juser.fz-juelich.de:878310$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000878310 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2019-12-20
000878310 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878310 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SCI-BASEL : 2018$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878310 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-20
000878310 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000878310 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000878310 9141_ $$y2020
000878310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161596$$aForschungszentrum Jülich$$b0$$kFZJ
000878310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ
000878310 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878310 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000878310 9801_ $$aAPC
000878310 9801_ $$aFullTexts
000878310 980__ $$ajournal
000878310 980__ $$aVDB
000878310 980__ $$aUNRESTRICTED
000878310 980__ $$aI:(DE-Juel1)IEK-2-20101013
000878310 980__ $$aAPC
000878310 981__ $$aI:(DE-Juel1)IMD-1-20101013