001     878310
005     20240711092303.0
024 7 _ |2 doi
|a 10.3390/app10165556
024 7 _ |2 Handle
|a 2128/25484
024 7 _ |a WOS:000564696900001
|2 WOS
037 _ _ |a FZJ-2020-02770
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)161596
|a Fischer, Torsten
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Fatigue Cracking of Additively Manufactured Materials—Process and Material Perspectives
260 _ _ |a Basel
|b MDPI
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1597239018_10913
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Strong efforts are made internationally to optimize the process control of laser additive manufacturing processes. For this purpose, advanced detectors and monitoring software are being developed to control the quality of production. However, commercial suppliers of metal powders and part manufacturers are essentially focused on well-established materials. This article demonstrates the potential of optimized process control. Furthermore, we outline the development of a new high temperature structural steel, tailored to best utilize the advantages of additive manufacturing techniques. In this context, the impact of production-induced porosity on fatigue strength of austenitic 316L is presented. Additionally, we discuss the first conceptual results of a novel ferritic steel, named HiperFer (High Performance Ferrite), which was designed for increased fatigue strength. This ferritic, Laves phase-strengthened, stainless steel could be used for a wide range of structural components in power and (petro)chemical engineering at maximum temperatures ranging from about 580 to 650 °C. This material benefits from in situ heat treatment and counteracts process-related defects by “reactive” crack obstruction mechanisms, hampering both crack initiation and crack propagation. In this way, increased fatigue resistance and safety can be achieved.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129742
|a Kuhn, Bernd
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Rieck, Detlef
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Schulz, Axel
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Trieglaff, Ralf
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Wilms, Markus Benjamin
|b 5
773 _ _ |0 PERI:(DE-600)2704225-X
|a 10.3390/app10165556
|g Vol. 10, no. 16, p. 5556 -
|n 16
|p 5556 -
|t Applied Sciences
|v 10
|x 2076-3417
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/878310/files/Invoice_applsci-893060.pdf
856 4 _ |u https://juser.fz-juelich.de/record/878310/files/Invoice_applsci-893060.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/878310/files/applsci-10-05556.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878310/files/applsci-10-05556.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878310
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161596
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129742
|a Forschungszentrum Jülich
|b 1
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2019-12-20
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b APPL SCI-BASEL : 2018
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|f 2019-12-20
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2019-12-20
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21