000878369 001__ 878369
000878369 005__ 20240712113255.0
000878369 0247_ $$2doi$$a10.1002/fuce.201900201
000878369 0247_ $$2ISSN$$a1615-6846
000878369 0247_ $$2ISSN$$a1615-6854
000878369 0247_ $$2Handle$$a2128/25561
000878369 0247_ $$2WOS$$aWOS:000563058600009
000878369 037__ $$aFZJ-2020-02809
000878369 082__ $$a620
000878369 1001_ $$0P:(DE-Juel1)173951$$aLin, Jingjing$$b0$$ufzj
000878369 245__ $$aPBI‐type Polymers and Acidic Proton Conducting Ionic Liquids – Conductivity and Molecular Interactions
000878369 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878369 3367_ $$2DRIVER$$aarticle
000878369 3367_ $$2DataCite$$aOutput Types/Journal article
000878369 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599487245_14807
000878369 3367_ $$2BibTeX$$aARTICLE
000878369 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878369 3367_ $$00$$2EndNote$$aJournal Article
000878369 520__ $$aProton conducting ionic liquids (PILs) are discussed as new electrolytes for the use as non‐aqueous electrolytes at operation temperatures above 100 °C. During fuel cell operation the presence of significant amounts of residual water is unavoidable. The highly Brønsted‐acidic PIL 2‐Sulfoethylmethylammonum triflate [2‐Sema][TfO] is able to perform fast proton exchange processes with H2O, resulting from 1H‐NMR and pulsed field gradient (PFG)/diffusion ordered spectroscopy (DOSY) self‐diffusion measurements. Proton conduction takes place by a vehicle mechanism via PIL cations or H3O+, but also by a cooperative mechanism involving both species. Thus, highly Brønsted‐acidic PILs are promising candidates for the use as non‐aqueous electrolytes. To use [2‐Sema][TfO] as electrolyte in a proton electrolyte fuel cell (PEFC) it has to be immobilized in a host polymer. There is a (slow) uptake of the PIL by polybenzimidazole (PBI) up to a weight increase of ∼130%, due to a swelling process. A protonation of the basic imidazole moieties takes place. NMR analysis was applied to elucidate the molecular interactions between PBI, PIL, and residual water. Proton exchange, respectively an interaction between the polar groups and water can be observed in spectra, indicating a network of H‐bonds in doped PBI. Therefore, highly acidic PILs are promising candidates for the use as non‐aqueous electrolytes.
000878369 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000878369 588__ $$aDataset connected to CrossRef
000878369 7001_ $$0P:(DE-Juel1)140525$$aKorte, C.$$b1$$eCorresponding author$$ufzj
000878369 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201900201$$gp. fuce.201900201$$n4$$p461-468$$tFuel cells$$v20$$x1615-6854$$y2020
000878369 8564_ $$uhttps://juser.fz-juelich.de/record/878369/files/fuce.201900201.pdf$$yOpenAccess
000878369 8564_ $$uhttps://juser.fz-juelich.de/record/878369/files/fuce.201900201.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878369 8767_ $$92020-07-01$$d2020-08-11$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pfuce.201900201.R1
000878369 909CO $$ooai:juser.fz-juelich.de:878369$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000878369 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173951$$aForschungszentrum Jülich$$b0$$kFZJ
000878369 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b1$$kFZJ
000878369 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000878369 9141_ $$y2020
000878369 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878369 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878369 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878369 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878369 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL CELLS : 2018$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878369 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878369 920__ $$lyes
000878369 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000878369 9801_ $$aAPC
000878369 9801_ $$aFullTexts
000878369 980__ $$ajournal
000878369 980__ $$aVDB
000878369 980__ $$aUNRESTRICTED
000878369 980__ $$aI:(DE-Juel1)IEK-14-20191129
000878369 980__ $$aAPC
000878369 981__ $$aI:(DE-Juel1)IET-4-20191129