000878549 001__ 878549
000878549 005__ 20240708133542.0
000878549 0247_ $$2doi$$a10.1016/j.fusengdes.2020.111603
000878549 0247_ $$2ISSN$$a0920-3796
000878549 0247_ $$2ISSN$$a1873-7196
000878549 0247_ $$2Handle$$a2128/25579
000878549 0247_ $$2WOS$$aWOS:000540064300001
000878549 037__ $$aFZJ-2020-02908
000878549 082__ $$a530
000878549 1001_ $$0P:(DE-HGF)0$$aSiccinio, M.$$b0$$eCorresponding author
000878549 245__ $$aDEMO physics challenges beyond ITER
000878549 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000878549 3367_ $$2DRIVER$$aarticle
000878549 3367_ $$2DataCite$$aOutput Types/Journal article
000878549 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599563601_31238
000878549 3367_ $$2BibTeX$$aARTICLE
000878549 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878549 3367_ $$00$$2EndNote$$aJournal Article
000878549 520__ $$aFor electricity producing tokamak fusion reactors like EU-DEMO, it is prudent to choose a plasma scenario close to the ITER baseline, where the largest amount of experimental evidence is available. Nevertheless, there are some aspects in which ITER and EU-DEMO have to differ, as the simple exercise of up-scaling from ITER to a larger device is constrained both by physical nonlinearities and by technological limits. In this work, relevant differences between ITER and the current EU-DEMO baseline in terms of plasma scenario are discussed. Firstly, EU-DEMO is assumed to operate with a very large amount of radiative power originating both from the scrape-off layer and, markedly, from the core. This radiation level is obtained by means of seeded impurities, whose presence significantly affects many aspects of the scenario itself, especially in terms of transient control. Secondly, because of the need of breeding tritium, the EU-DEMO wall is less robust than the ITER one. This implies that every off-normal interruption of the plasma discharge, for example in presence of a divertor reattachment, cannot rely on fast-shutdown procedures finally triggering a loss of plasma control at high current, but other strategies need to be developed. Thirdly, the ITER method for the control of the so-called sawteeth (ST) has been shown to be too expensive in terms of auxiliary power requirements, thus other solutions have to be explored. Finally, the problem of actively mitigating, or suppressing, the Edge Localised Modes (ELMs) has recently increased the interest on naturally ELM-free regimes (like QH-mode, I-mode, and also negative triangularity) for EU-DEMO, thus increasing the needs for ELM mitigation or suppression with respect to the approach adopted in ITER.
000878549 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000878549 588__ $$aDataset connected to CrossRef
000878549 7001_ $$0P:(DE-Juel1)129967$$aBiel, W.$$b1
000878549 7001_ $$0P:(DE-HGF)0$$aCavedon, M.$$b2
000878549 7001_ $$0P:(DE-HGF)0$$aFable, E.$$b3
000878549 7001_ $$0P:(DE-HGF)0$$aFederici, G.$$b4
000878549 7001_ $$0P:(DE-HGF)0$$aJanky, F.$$b5
000878549 7001_ $$0P:(DE-HGF)0$$aLux, H.$$b6
000878549 7001_ $$0P:(DE-HGF)0$$aMaviglia, F.$$b7
000878549 7001_ $$0P:(DE-HGF)0$$aMorris, J.$$b8
000878549 7001_ $$0P:(DE-HGF)0$$aPalermo, F.$$b9
000878549 7001_ $$00000-0002-0099-6675$$aSauter, O.$$b10
000878549 7001_ $$00000-0002-8170-4792$$aSubba, F.$$b11
000878549 7001_ $$0P:(DE-HGF)0$$aZohm, H.$$b12
000878549 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2020.111603$$gVol. 156, p. 111603 -$$p111603 -$$tFusion engineering and design$$v156$$x0920-3796$$y2020
000878549 8564_ $$uhttps://juser.fz-juelich.de/record/878549/files/Postpint%20Biel_DEMO%20physics%20challenges%20beyond%20ITER.pdf$$yPublished on 2020-03-05. Available in OpenAccess from 2022-03-05.
000878549 8564_ $$uhttps://juser.fz-juelich.de/record/878549/files/Postpint%20Biel_DEMO%20physics%20challenges%20beyond%20ITER.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-05. Available in OpenAccess from 2022-03-05.
000878549 909CO $$ooai:juser.fz-juelich.de:878549$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b1$$kFZJ
000878549 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000878549 9141_ $$y2020
000878549 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-09
000878549 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878549 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878549 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2018$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-09
000878549 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-09$$wger
000878549 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000878549 920__ $$lyes
000878549 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000878549 9801_ $$aFullTexts
000878549 980__ $$ajournal
000878549 980__ $$aVDB
000878549 980__ $$aUNRESTRICTED
000878549 980__ $$aI:(DE-Juel1)IEK-4-20101013
000878549 981__ $$aI:(DE-Juel1)IFN-1-20101013