000878650 001__ 878650
000878650 005__ 20230505130535.0
000878650 0247_ $$2doi$$a10.1021/acs.nanolett.9b01487
000878650 0247_ $$2ISSN$$a1530-6984
000878650 0247_ $$2ISSN$$a1530-6992
000878650 0247_ $$2altmetric$$aaltmetric:61427216
000878650 0247_ $$2pmid$$apmid:31117760
000878650 0247_ $$2WOS$$aWOS:000471834900094
000878650 037__ $$aFZJ-2020-02971
000878650 041__ $$aEnglish
000878650 082__ $$a660
000878650 1001_ $$0P:(DE-HGF)0$$aVicarelli, Leonardo$$b0
000878650 245__ $$aSingle Electron Precision in the Measurement of Charge Distributions on Electrically Biased Graphene Nanotips Using Electron Holography
000878650 260__ $$aWashington, DC$$bACS Publ.$$c2019
000878650 3367_ $$2DRIVER$$aarticle
000878650 3367_ $$2DataCite$$aOutput Types/Journal article
000878650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602057526_17614
000878650 3367_ $$2BibTeX$$aARTICLE
000878650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878650 3367_ $$00$$2EndNote$$aJournal Article
000878650 520__ $$aWe use off-axis electron holography to measure the electrostatic charge density distributions on graphene-based nanogap devices that have thicknesses of between 1 and 10 monolayers and separations of between 8 and 58 nm with a precision of better than a single unit charge. Our experimental measurements, which are compared with finite element simulations, show that wider graphene tips, which have thicknesses of a single monolayer at their ends, exhibit charge accumulation along their edges. The results are relevant for both fundamental research on graphene electrostatics and applications of graphene nanogaps to single nucleotide detection in DNA sequencing, single molecule electronics, plasmonic antennae, and cold field emission sources.
000878650 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878650 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000878650 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x2
000878650 588__ $$aDataset connected to CrossRef
000878650 7001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b1$$eCorresponding author
000878650 7001_ $$0P:(DE-HGF)0$$aMalladi, Sairam K.$$b2
000878650 7001_ $$0P:(DE-HGF)0$$aZandbergen, Henny W.$$b3
000878650 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b4$$ufzj
000878650 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b01487$$gVol. 19, no. 6, p. 4091 - 4096$$n6$$p4091 - 4096$$tNano letters$$v19$$x1530-6992$$y2019
000878650 8564_ $$uhttps://juser.fz-juelich.de/record/878650/files/acs.nanolett.9b01487.pdf$$yRestricted
000878650 8564_ $$uhttps://juser.fz-juelich.de/record/878650/files/acs.nanolett.9b01487.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878650 909CO $$ooai:juser.fz-juelich.de:878650$$pec_fundedresources$$pVDB$$popenaire
000878650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich$$b1$$kFZJ
000878650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000878650 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878650 9141_ $$y2020
000878650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000878650 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000878650 920__ $$lyes
000878650 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878650 980__ $$ajournal
000878650 980__ $$aVDB
000878650 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878650 980__ $$aUNRESTRICTED