001     878722
005     20210130005738.0
024 7 _ |a 10.1111/tpj.14865
|2 doi
024 7 _ |a 0960-7412
|2 ISSN
024 7 _ |a 1365-313X
|2 ISSN
024 7 _ |a 2128/25693
|2 Handle
024 7 _ |a altmetric:84756539
|2 altmetric
024 7 _ |a pmid:32502321
|2 pmid
024 7 _ |a WOS:000543137600001
|2 WOS
037 _ _ |a FZJ-2020-03022
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Sonnewald, Uwe
|0 0000-0003-1835-5339
|b 0
245 _ _ |a The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering
260 _ _ |a Oxford [u.a.]
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600687608_27522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub‐Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub‐Saharan Africa. The Cassava Source–Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field‐grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi‐national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high‐yielding cassava genotypes. It also builds the foundation for genome‐scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source–sink relations and increased yield potential.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fernie, Alisdair R.
|0 0000-0001-9000-335X
|b 1
700 1 _ |a Gruissem, Wilhelm
|0 0000-0002-1872-2998
|b 2
700 1 _ |a Schläpfer, Pascal
|0 0000-0002-0828-8681
|b 3
700 1 _ |a Anjanappa, Ravi B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chang, Shu‐Heng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ludewig, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 7
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 8
700 1 _ |a Doorn, Anna M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rabbi, Ismail Y.
|0 0000-0001-9966-2941
|b 10
700 1 _ |a Zierer, Wolfgang
|0 0000-0002-0397-8296
|b 11
|e Corresponding author
773 _ _ |a 10.1111/tpj.14865
|g Vol. 103, no. 5, p. 1655 - 1665
|0 PERI:(DE-600)2020961-7
|n 5
|p 1655 - 1665
|t The plant journal
|v 103
|y 2020
|x 1365-313X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878722/files/tpj.14865.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878722/files/tpj.14865.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161185
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT J : 2018
|d 2020-02-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT J : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21