Journal Article FZJ-2020-03022

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Wiley-Blackwell Oxford [u.a.]

The plant journal 103(5), 1655 - 1665 () [10.1111/tpj.14865]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub‐Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub‐Saharan Africa. The Cassava Source–Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field‐grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi‐national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high‐yielding cassava genotypes. It also builds the foundation for genome‐scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source–sink relations and increased yield potential.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-08-31, last modified 2021-01-30