000884301 001__ 884301
000884301 005__ 20240712084526.0
000884301 0247_ $$2doi$$a10.1002/admt.202000592
000884301 0247_ $$2Handle$$a2128/26699
000884301 0247_ $$2altmetric$$aaltmetric:95709742
000884301 0247_ $$2WOS$$aWOS:000588665700001
000884301 037__ $$aFZJ-2020-03187
000884301 082__ $$a600
000884301 1001_ $$0P:(DE-Juel1)173834$$aLee, Minoh$$b0$$eCorresponding author
000884301 245__ $$aBifunctional CoFeVO$_x$ Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells
000884301 260__ $$aWeinheim$$bWiley$$c2020
000884301 3367_ $$2DRIVER$$aarticle
000884301 3367_ $$2DataCite$$aOutput Types/Journal article
000884301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610278596_17468
000884301 3367_ $$2BibTeX$$aARTICLE
000884301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884301 3367_ $$00$$2EndNote$$aJournal Article
000884301 520__ $$aPhotovoltaic driven electrochemical (PV-EC) water splitting technology is considered as one of the solutions for an environmental-friendly hydrogen supply. In a PV-EC system, efficient catalysts are required to increase the rate of both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we present the development of a CoFeVO$_x$ bifunctional catalyst produced by a simple electrodeposition method. We have found that after the water splitting reaction vanadium is almost completely depleted in the mixture of elements for OER while its concentration at the HER catalyst is similar or even higher after the reaction. For the OER catalyst the depletion of vanadium might lead to the formation of pores, which could be correlated with the activity enhancement. The developed catalyst is integrated into PV-EC devices, coupled with different types of silicon PV. An average solar to hydrogen efficiency of 13.3 % (9.6 cm$^2$ PV aperture area) is achieved with a shingled module consisting of three laterally series connected silicon heterojunction solar cells.
000884301 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000884301 7001_ $$0P:(DE-Juel1)177795$$aDing, Xinyu$$b1
000884301 7001_ $$0P:(DE-Juel1)179584$$aBANERJEE, SWARNENDU$$b2
000884301 7001_ $$0P:(DE-Juel1)178709$$aKrause, Florian$$b3
000884301 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b4$$ufzj
000884301 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b5$$ufzj
000884301 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b6$$ufzj
000884301 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b7$$ufzj
000884301 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b8$$ufzj
000884301 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b9$$ufzj
000884301 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b10$$ufzj
000884301 7001_ $$0P:(DE-Juel1)130246$$aHaas, Stefan$$b11$$ufzj
000884301 773__ $$0PERI:(DE-600)2850995-X$$a10.1002/admt.202000592$$n12$$p2000592$$tAdvanced materials technologies$$v5$$x2365-709X$$y2020
000884301 8564_ $$uhttps://juser.fz-juelich.de/record/884301/files/Supporting%20Information.pdf$$yRestricted
000884301 8564_ $$uhttps://juser.fz-juelich.de/record/884301/files/Journal%20version.pdf$$yOpenAccess
000884301 8767_ $$d2020-11-19$$eAPC$$jDEAL$$lDEAL: Wiley
000884301 909CO $$ooai:juser.fz-juelich.de:884301$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173834$$aForschungszentrum Jülich$$b0$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b4$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b5$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b6$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b7$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b8$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b9$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b10$$kFZJ
000884301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b11$$kFZJ
000884301 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000884301 9141_ $$y2020
000884301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000884301 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884301 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER TECHNOL-US : 2018$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER TECHNOL-US : 2018$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884301 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000884301 9801_ $$aAPC
000884301 9801_ $$aFullTexts
000884301 980__ $$ajournal
000884301 980__ $$aVDB
000884301 980__ $$aUNRESTRICTED
000884301 980__ $$aI:(DE-Juel1)IEK-5-20101013
000884301 980__ $$aAPC
000884301 981__ $$aI:(DE-Juel1)IMD-3-20101013