000884304 001__ 884304
000884304 005__ 20240712113251.0
000884304 0247_ $$2doi$$a10.1002/fuce.202000068
000884304 0247_ $$2Handle$$a2128/26017
000884304 0247_ $$2WOS$$aWOS:000572180800001
000884304 037__ $$aFZJ-2020-03190
000884304 082__ $$a620
000884304 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0$$eCorresponding author
000884304 245__ $$aReference electrode positioning in PEM fuel cell at a parabolic anode tip
000884304 260__ $$aWeinheim$$bWiley-VCH$$c2020
000884304 3367_ $$2DRIVER$$aarticle
000884304 3367_ $$2DataCite$$aOutput Types/Journal article
000884304 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604320408_30548
000884304 3367_ $$2BibTeX$$aARTICLE
000884304 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884304 3367_ $$00$$2EndNote$$aJournal Article
000884304 520__ $$aTwo‐dimensional (2D) distribution of proton exchange membrane (PEM) fuel cell cathode overpotential η in the vicinity of parabolic anode tip is described by nonlinear Poisson–Boltzmann equation. The 2d shape of η is calculated numerically for the anode tip curvature varying by two orders of magnitude. It is shown that the reference electrode for measuring cathode overpotential can be located at a distance on the order of two characteristic lengths from the anode tip. For typical PEM fuel cell parameters, this distance is about 5.5 cm. A compact design for the reference electrode positioning is suggested.
000884304 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000884304 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.202000068$$n5$$p527-530$$tFuel cells$$v20$$x1615-6846$$y2020
000884304 8564_ $$uhttps://juser.fz-juelich.de/record/884304/files/fuce.202000068.pdf$$yOpenAccess
000884304 8564_ $$uhttps://juser.fz-juelich.de/record/884304/files/fuce.202000068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884304 8767_ $$92020-08-26$$d2020-09-24$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000884304 909CO $$ooai:juser.fz-juelich.de:884304$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000884304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
000884304 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000884304 9141_ $$y2020
000884304 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884304 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884304 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884304 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884304 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL CELLS : 2018$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884304 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884304 920__ $$lyes
000884304 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000884304 9801_ $$aAPC
000884304 9801_ $$aFullTexts
000884304 980__ $$ajournal
000884304 980__ $$aVDB
000884304 980__ $$aUNRESTRICTED
000884304 980__ $$aI:(DE-Juel1)IEK-14-20191129
000884304 980__ $$aAPC
000884304 981__ $$aI:(DE-Juel1)IET-4-20191129