000884305 001__ 884305
000884305 005__ 20210130005906.0
000884305 0247_ $$2doi$$a10.1016/j.apgeochem.2019.104476
000884305 0247_ $$2ISSN$$a0883-2927
000884305 0247_ $$2ISSN$$a1872-9134
000884305 0247_ $$2Handle$$a2128/25751
000884305 0247_ $$2WOS$$aWOS:000518403400002
000884305 037__ $$aFZJ-2020-03191
000884305 082__ $$a550
000884305 1001_ $$0P:(DE-HGF)0$$aSun, Y.$$b0$$eCorresponding author
000884305 245__ $$a‘Co-evolution’ of uranium concentration and oxygen stable isotope in phosphate rocks
000884305 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000884305 3367_ $$2DRIVER$$aarticle
000884305 3367_ $$2DataCite$$aOutput Types/Journal article
000884305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601026903_14571
000884305 3367_ $$2BibTeX$$aARTICLE
000884305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884305 3367_ $$00$$2EndNote$$aJournal Article
000884305 520__ $$aPhosphate rocks (PRs) used in fertilizer production contain uranium (U), which enters agricultural soils through phosphorus fertilization. However, our knowledge is still limited and cannot explain the different levels of U contamination found in agricultural systems. The paper reviewed the spatial and temporal U variations in PRs to obtain a comprehensive overview of U levels in various PRs worldwide and to investigate why U concentrations in igneous PRs are significantly lower compared to sedimentary PRs, and why less U is present in old sedimentary PRs (Precambrian-Cambrian) than in younger PRs (Ordovician-Neogene). In addition, the natural oxygen isotope compositions of phosphate (δ18Op) in various PRs were determined to identify their origins in relation to their U concentration. The δ18Op values differed among igneous PRs, old sedimentary PRs, and younger sedimentary PRs. Generally, the PRs with low δ18Op values had low U concentrations. In igneous PRs, low U concentrations were due to the lack of secondary U enrichment processes after rock formation, with low δ18Op values resulting from limited isotope fractionation at high temperature. Conversely, in sedimentary PRs, both U concentrations and δ18Op values were influenced by paleoclimate and paleogeographic features. Overall, there is a time-dependent coincidence of processes altering U concentration and δ18Op signatures of sedimentary PRs in a similar direction.
000884305 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000884305 588__ $$aDataset connected to CrossRef
000884305 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b1
000884305 7001_ $$0P:(DE-Juel1)138881$$aWu, Bei$$b2
000884305 7001_ $$0P:(DE-HGF)0$$aHaneklaus, S.$$b3
000884305 7001_ $$0P:(DE-HGF)0$$aMaekawa, M.$$b4
000884305 7001_ $$0P:(DE-Juel1)129567$$aLücke, A.$$b5
000884305 7001_ $$0P:(DE-HGF)0$$aSchnug, E.$$b6
000884305 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b7
000884305 773__ $$0PERI:(DE-600)1499242-5$$a10.1016/j.apgeochem.2019.104476$$gVol. 114, p. 104476 -$$p104476 -$$tApplied geochemistry$$v114$$x0883-2927$$y2020
000884305 8564_ $$uhttps://juser.fz-juelich.de/record/884305/files/Co-evolution.pdf$$yPublished on 2019-11-20. Available in OpenAccess from 2021-11-20.
000884305 8564_ $$uhttps://juser.fz-juelich.de/record/884305/files/Co-evolution.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-20. Available in OpenAccess from 2021-11-20.
000884305 909CO $$ooai:juser.fz-juelich.de:884305$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000884305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000884305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000884305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138881$$aForschungszentrum Jülich$$b2$$kFZJ
000884305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b5$$kFZJ
000884305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b7$$kFZJ
000884305 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000884305 9141_ $$y2020
000884305 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000884305 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000884305 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000884305 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL GEOCHEM : 2018$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000884305 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-05$$wger
000884305 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000884305 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000884305 980__ $$ajournal
000884305 980__ $$aVDB
000884305 980__ $$aUNRESTRICTED
000884305 980__ $$aI:(DE-Juel1)IBG-3-20101118
000884305 9801_ $$aFullTexts