Home > Publications database > ‘Co-evolution’ of uranium concentration and oxygen stable isotope in phosphate rocks |
Journal Article | FZJ-2020-03191 |
; ; ; ; ; ; ;
2020
Elsevier Science
Amsterdam [u.a.]
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/25751 doi:10.1016/j.apgeochem.2019.104476
Abstract: Phosphate rocks (PRs) used in fertilizer production contain uranium (U), which enters agricultural soils through phosphorus fertilization. However, our knowledge is still limited and cannot explain the different levels of U contamination found in agricultural systems. The paper reviewed the spatial and temporal U variations in PRs to obtain a comprehensive overview of U levels in various PRs worldwide and to investigate why U concentrations in igneous PRs are significantly lower compared to sedimentary PRs, and why less U is present in old sedimentary PRs (Precambrian-Cambrian) than in younger PRs (Ordovician-Neogene). In addition, the natural oxygen isotope compositions of phosphate (δ18Op) in various PRs were determined to identify their origins in relation to their U concentration. The δ18Op values differed among igneous PRs, old sedimentary PRs, and younger sedimentary PRs. Generally, the PRs with low δ18Op values had low U concentrations. In igneous PRs, low U concentrations were due to the lack of secondary U enrichment processes after rock formation, with low δ18Op values resulting from limited isotope fractionation at high temperature. Conversely, in sedimentary PRs, both U concentrations and δ18Op values were influenced by paleoclimate and paleogeographic features. Overall, there is a time-dependent coincidence of processes altering U concentration and δ18Op signatures of sedimentary PRs in a similar direction.
![]() |
The record appears in these collections: |