Home > Publications database > ‘Co-evolution’ of uranium concentration and oxygen stable isotope in phosphate rocks > print |
001 | 884305 | ||
005 | 20210130005906.0 | ||
024 | 7 | _ | |a 10.1016/j.apgeochem.2019.104476 |2 doi |
024 | 7 | _ | |a 0883-2927 |2 ISSN |
024 | 7 | _ | |a 1872-9134 |2 ISSN |
024 | 7 | _ | |a 2128/25751 |2 Handle |
024 | 7 | _ | |a WOS:000518403400002 |2 WOS |
037 | _ | _ | |a FZJ-2020-03191 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Sun, Y. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a ‘Co-evolution’ of uranium concentration and oxygen stable isotope in phosphate rocks |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601026903_14571 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Phosphate rocks (PRs) used in fertilizer production contain uranium (U), which enters agricultural soils through phosphorus fertilization. However, our knowledge is still limited and cannot explain the different levels of U contamination found in agricultural systems. The paper reviewed the spatial and temporal U variations in PRs to obtain a comprehensive overview of U levels in various PRs worldwide and to investigate why U concentrations in igneous PRs are significantly lower compared to sedimentary PRs, and why less U is present in old sedimentary PRs (Precambrian-Cambrian) than in younger PRs (Ordovician-Neogene). In addition, the natural oxygen isotope compositions of phosphate (δ18Op) in various PRs were determined to identify their origins in relation to their U concentration. The δ18Op values differed among igneous PRs, old sedimentary PRs, and younger sedimentary PRs. Generally, the PRs with low δ18Op values had low U concentrations. In igneous PRs, low U concentrations were due to the lack of secondary U enrichment processes after rock formation, with low δ18Op values resulting from limited isotope fractionation at high temperature. Conversely, in sedimentary PRs, both U concentrations and δ18Op values were influenced by paleoclimate and paleogeographic features. Overall, there is a time-dependent coincidence of processes altering U concentration and δ18Op signatures of sedimentary PRs in a similar direction. |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Amelung, W. |0 P:(DE-Juel1)129427 |b 1 |
700 | 1 | _ | |a Wu, Bei |0 P:(DE-Juel1)138881 |b 2 |
700 | 1 | _ | |a Haneklaus, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Maekawa, M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Lücke, A. |0 P:(DE-Juel1)129567 |b 5 |
700 | 1 | _ | |a Schnug, E. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Bol, R. |0 P:(DE-Juel1)145865 |b 7 |
773 | _ | _ | |a 10.1016/j.apgeochem.2019.104476 |g Vol. 114, p. 104476 - |0 PERI:(DE-600)1499242-5 |p 104476 - |t Applied geochemistry |v 114 |y 2020 |x 0883-2927 |
856 | 4 | _ | |y Published on 2019-11-20. Available in OpenAccess from 2021-11-20. |u https://juser.fz-juelich.de/record/884305/files/Co-evolution.pdf |
856 | 4 | _ | |y Published on 2019-11-20. Available in OpenAccess from 2021-11-20. |x pdfa |u https://juser.fz-juelich.de/record/884305/files/Co-evolution.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:884305 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129427 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138881 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129567 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145865 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-05 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL GEOCHEM : 2018 |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-05 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-05 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-05 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-05 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-05 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|