000884734 001__ 884734
000884734 005__ 20240711092310.0
000884734 0247_ $$2doi$$a10.3390/met10101292
000884734 0247_ $$2Handle$$a2128/25795
000884734 0247_ $$2WOS$$aWOS:000586909000001
000884734 037__ $$aFZJ-2020-03228
000884734 082__ $$a530
000884734 1001_ $$0P:(DE-Juel1)173887$$aWang, Kai$$b0$$ufzj
000884734 245__ $$aInfluence of interface proximity on precipitation thermodynamics
000884734 260__ $$aBasel$$bMDPI$$c2020
000884734 3367_ $$2DRIVER$$aarticle
000884734 3367_ $$2DataCite$$aOutput Types/Journal article
000884734 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601551113_20344
000884734 3367_ $$2BibTeX$$aARTICLE
000884734 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884734 3367_ $$00$$2EndNote$$aJournal Article
000884734 520__ $$aThe formation of coherent precipitates is often accompanied by large elastic mismatch stresses, which suppress phase separation. We discuss the presence of interfaces as a mechanism for stress relaxation, which can lead to preferred zones of precipitation. In particular, we discuss the proximity of free surfaces and shear-coupled grain boundaries, for which we can obtain a substantial local energy reduction and predict the influence on the local precipitation thermodynamics. The latter case is accompanied by morphological changes of the grain boundary, which are less suitable for large-scale descriptions. For that purpose, we develop an effective description through an elastic softening inside the grain boundary and map the microscopic grain boundary relaxation to a mesoscopic elastic and phase field model, which also allows generalizing the description to multi-phase situations.
000884734 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000884734 588__ $$aDataset connected to CrossRef
000884734 7001_ $$0P:(DE-Juel1)169962$$aWeikamp, Marc$$b1
000884734 7001_ $$0P:(DE-HGF)0$$aLin, Mingxuan$$b2
000884734 7001_ $$0P:(DE-HGF)0$$aZimmermann, Carina$$b3
000884734 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b4$$ufzj
000884734 7001_ $$0P:(DE-HGF)0$$aPrahl, Ulrich$$b5
000884734 7001_ $$0P:(DE-HGF)0$$aHunkel, Martin$$b6
000884734 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b7$$eCorresponding author
000884734 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met10101292$$gVol. 10, no. 10, p. 1292 -$$n10$$p1292 -$$tMetals$$v10$$x2075-4701$$y2020
000884734 8564_ $$uhttps://juser.fz-juelich.de/record/884734/files/Invoice_MDPI_metals-929845_1260.08EUR.pdf
000884734 8564_ $$uhttps://juser.fz-juelich.de/record/884734/files/Invoice_MDPI_metals-929845_1260.08EUR.pdf?subformat=pdfa$$xpdfa
000884734 8564_ $$uhttps://juser.fz-juelich.de/record/884734/files/metals-10-01292.pdf$$yOpenAccess
000884734 8564_ $$uhttps://juser.fz-juelich.de/record/884734/files/metals-10-01292.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884734 8767_ $$8929845$$92020-09-23$$d2020-09-30$$eAPC$$jZahlung erfolgt$$zBelegnr.: 1200157697
000884734 909CO $$ooai:juser.fz-juelich.de:884734$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000884734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173887$$aForschungszentrum Jülich$$b0$$kFZJ
000884734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b4$$kFZJ
000884734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b7$$kFZJ
000884734 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000884734 9141_ $$y2020
000884734 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-18
000884734 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884734 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2018$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884734 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000884734 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000884734 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000884734 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000884734 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000884734 9801_ $$aAPC
000884734 9801_ $$aFullTexts
000884734 980__ $$ajournal
000884734 980__ $$aVDB
000884734 980__ $$aUNRESTRICTED
000884734 980__ $$aI:(DE-Juel1)IEK-2-20101013
000884734 980__ $$aI:(DE-82)080011_20140620
000884734 980__ $$aAPC
000884734 981__ $$aI:(DE-Juel1)IMD-1-20101013