001     884747
005     20240610120056.0
024 7 _ |a 10.1021/acsnano.0c05186
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/25734
|2 Handle
024 7 _ |a altmetric:88920737
|2 altmetric
024 7 _ |a 32844655
|2 pmid
024 7 _ |a WOS:000615914200002
|2 WOS
037 _ _ |a FZJ-2020-03236
082 _ _ |a 540
100 1 _ |a Hochstetter, Axel
|0 0000-0002-2791-2400
|b 0
245 _ _ |a Deterministic Lateral Displacement: Challenges and Perspectives
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600951298_17521
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vernekar, Rohan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Austin, Robert H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Becker, Holger
|0 0000-0002-7678-2518
|b 3
700 1 _ |a Beech, Jason P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fedosov, Dmitry A.
|0 P:(DE-Juel1)140336
|b 5
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 6
700 1 _ |a Kim, Sung-Cheol
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Smith, Joshua T.
|0 0000-0002-3530-0850
|b 8
700 1 _ |a Stolovitzky, Gustavo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Tegenfeldt, Jonas O.
|0 0000-0002-3695-6886
|b 10
700 1 _ |a Wunsch, Benjamin H.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zeming, Kerwin K.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Krüger, Timm
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Inglis, David W.
|0 0000-0001-8239-5568
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acsnano.0c05186
|g Vol. 14, no. 9, p. 10784 - 10795
|0 PERI:(DE-600)2383064-5
|n 9
|p 10784 - 10795
|t ACS nano
|v 14
|y 2020
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/884747/files/acsnano.0c05186.pdf
|y Restricted
856 4 _ |y Published on 2020-08-26. Available in OpenAccess from 2021-08-26.
|u https://juser.fz-juelich.de/record/884747/files/Hochstetter_ACSN_2020.pdf
856 4 _ |y Published on 2020-08-26. Available in OpenAccess from 2021-08-26.
|x pdfa
|u https://juser.fz-juelich.de/record/884747/files/Hochstetter_ACSN_2020.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884747/files/acsnano.0c05186.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:884747
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)140336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21