001     884795
005     20240711101425.0
024 7 _ |a 10.3390/en13205490
|2 doi
024 7 _ |a 2128/26020
|2 Handle
024 7 _ |a altmetric:93527982
|2 altmetric
024 7 _ |a WOS:000585273500001
|2 WOS
037 _ _ |a FZJ-2020-03257
082 _ _ |a 620
100 1 _ |a Syranidou, Chloi
|0 P:(DE-Juel1)168194
|b 0
|e Corresponding author
245 _ _ |a Integration of Large-Scale Variable Renewable Energy Sources into the Future European Power System: On the Curtailment Challenge
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604322285_30098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The future European power system is projected to rely heavily on variable renewable energy sources (VRES), primarily wind and solar generation. However, the difficulties inherent to storing the primary energy of these sources is expected to pose significant challenges in terms of their integration into the system. To account for the high variability of renewable energy sources VRES, a novel pan-European dispatch model with high spatio-temporal resolution including load shifting is introduced here, providing highly detailed information regarding renewable energy curtailments for all Europe, typically underestimated in studies of future systems. which also includes modeling of load shifting. The model consists of four separate levels with different approaches for modeling thermal generation flexibility, storage units and demand as well as with spatial resolutions and generation dispatch formulations. Applying the developed model for the future European power system follows the results of corresponding transmission expansion planning studies, which are translated into the desired high spatial resolution. The analysis of the “large scale-RES” scenario for 2050 shows considerable congestion between northern and central Europe, which constitutes the primary cause of VRES curtailments of renewables. In addition, load shifting is shown to mostly improve the integration of solar energy into the system and not wind, which constitutes the dominant energy source for this scenario. Finally, the analysis of the curtailments time series using ideal converters shows that the best locations for their exploitation can be found in western Ireland and western Denmark.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Linssen, Jochen
|0 P:(DE-Juel1)130470
|b 1
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 2
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 3
773 _ _ |a 10.3390/en13205490
|g Vol. 13, no. 20, p. 5490 -
|0 PERI:(DE-600)2437446-5
|n 20
|p 5490 -
|t Energies
|v 13
|y 2020
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/884795/files/Invoice_MDPI_energies-946962_1417.58EUR.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884795/files/Invoice_MDPI_energies-946962_1417.58EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884795/files/energies-13-05490-v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884795/files/energies-13-05490-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884795
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130470
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156460
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21