000884898 001__ 884898
000884898 005__ 20240711113508.0
000884898 0247_ $$2doi$$a10.1016/j.nme.2020.100805
000884898 0247_ $$2Handle$$a2128/25856
000884898 0247_ $$2WOS$$aWOS:000600734700021
000884898 037__ $$aFZJ-2020-03303
000884898 082__ $$a624
000884898 1001_ $$0P:(DE-Juel1)139534$$aMöller, S.$$b0$$eCorresponding author
000884898 245__ $$a13C tracer deposition in EAST D and He plasmas investigated by high-throughput deuteron nuclear reaction analysis mapping
000884898 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000884898 3367_ $$2DRIVER$$aarticle
000884898 3367_ $$2DataCite$$aOutput Types/Journal article
000884898 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602228179_9110
000884898 3367_ $$2BibTeX$$aARTICLE
000884898 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884898 3367_ $$00$$2EndNote$$aJournal Article
000884898 520__ $$aRare isotope tracer injection represents an established way for following particle transport in fusion research, but a tracer experiment is only as good as the tracer can be followed and separated from the common isotope. Physical models for transport analysis such as ERO2.0 require accurate total amounts of deposition with high spatial resolution. This work describes an extended high throughput NRA post analysis approach together with the surface analysis results of 2 technically rough graphite-tiles of 150x150 mm2 surface area exposed to D and He plasmas in EAST.The applied 1.43 MeV deuteron beam NRA offers percent range accuracy for layer thicknesses ranging from few 10 nm to 20 µm. Optimisation of the beam line and beam optics enables operation with ≤20 nA without reaching critical radiation levels, resulting in a measurement time of 5-10 s per spot. This enabled acquiring in total 3070 NRA points on the central 46×46 mm2 cut-outs of each sample and an adjacent part of equal size within 12 h of analysis time.The layers contained 50-60% D, ∼2% 12C, and ∼3% O. The central 20 mm radius around the injection hole contains 98% of the total 13C deposition. NRA finds up to 5.8±0.9×1022 13C/m2 close to the hole with an e-folding fall-off length of about 3-10 mm in every radial direction. In the D discharge 24±2% and 16±2% in He of the injected 13C are found on the tiles with triangle shaped deposition profiles following ExB. The comparison to colour fringe analysis and SIMS reveals the particular strength of D-NRA regarding roughness, thick layers, and the separation of 12C and 13C deposits, but in compatible regions all methods agree. Compared to these, the NRA yields additional information indicating depositing species and physical processes.
000884898 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000884898 588__ $$aDataset connected to CrossRef
000884898 7001_ $$0P:(DE-Juel1)184709$$aDing, R.$$b1
000884898 7001_ $$0P:(DE-Juel1)184707$$aXie, H.$$b2
000884898 7001_ $$0P:(DE-HGF)0$$aGao, B. F.$$b3
000884898 7001_ $$0P:(DE-HGF)0$$aWang, B. G.$$b4
000884898 7001_ $$0P:(DE-Juel1)177701$$aPeng, Jiao$$b5$$ufzj
000884898 7001_ $$0P:(DE-Juel1)166375$$aLiu, S. C.$$b6
000884898 7001_ $$0P:(DE-Juel1)180483$$aGao, W.$$b7
000884898 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b8
000884898 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b9$$ufzj
000884898 7001_ $$0P:(DE-Juel1)130193$$aWienhold, P.$$b10
000884898 7001_ $$0P:(DE-Juel1)172718$$aKrug, R.$$b11
000884898 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b12
000884898 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2020.100805$$gp. 100805 -$$p100805 -$$tNuclear materials and energy$$v25$$x2352-1791$$y2020
000884898 8564_ $$uhttps://juser.fz-juelich.de/record/884898/files/Invoice_OAD0000072391.pdf
000884898 8564_ $$uhttps://juser.fz-juelich.de/record/884898/files/1-s2.0-S2352179120300818-main.pdf$$yOpenAccess
000884898 8564_ $$uhttps://juser.fz-juelich.de/record/884898/files/Invoice_OAD0000072391.pdf?subformat=pdfa$$xpdfa
000884898 8564_ $$uhttps://juser.fz-juelich.de/record/884898/files/1-s2.0-S2352179120300818-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884898 8767_ $$8OAD0000072391$$92020-10-01$$d2020-10-09$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200157940
000884898 909CO $$ooai:juser.fz-juelich.de:884898$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b0$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184709$$aForschungszentrum Jülich$$b1$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184707$$aForschungszentrum Jülich$$b2$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177701$$aForschungszentrum Jülich$$b5$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166375$$aForschungszentrum Jülich$$b6$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180483$$aForschungszentrum Jülich$$b7$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b8$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b9$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130193$$aForschungszentrum Jülich$$b10$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172718$$aForschungszentrum Jülich$$b11$$kFZJ
000884898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b12$$kFZJ
000884898 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000884898 9141_ $$y2020
000884898 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000884898 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884898 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884898 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000884898 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000884898 920__ $$lyes
000884898 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000884898 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000884898 9801_ $$aAPC
000884898 9801_ $$aFullTexts
000884898 980__ $$ajournal
000884898 980__ $$aVDB
000884898 980__ $$aUNRESTRICTED
000884898 980__ $$aI:(DE-Juel1)IEK-4-20101013
000884898 980__ $$aI:(DE-Juel1)IEK-1-20101013
000884898 980__ $$aAPC
000884898 981__ $$aI:(DE-Juel1)IFN-1-20101013
000884898 981__ $$aI:(DE-Juel1)IMD-2-20101013