000885395 001__ 885395 000885395 005__ 20240712100839.0 000885395 0247_ $$2doi$$a10.5194/acp-20-9771-2020 000885395 0247_ $$2ISSN$$a1680-7316 000885395 0247_ $$2ISSN$$a1680-7324 000885395 0247_ $$2Handle$$a2128/25826 000885395 0247_ $$2WOS$$aWOS:000563076900003 000885395 037__ $$aFZJ-2020-03792 000885395 082__ $$a550 000885395 1001_ $$0P:(DE-Juel1)177681$$aLaube, Johannes C.$$b0$$eCorresponding author 000885395 245__ $$aInvestigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11 000885395 260__ $$aKatlenburg-Lindau$$bEGU$$c2020 000885395 3367_ $$2DRIVER$$aarticle 000885395 3367_ $$2DataCite$$aOutput Types/Journal article 000885395 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601887761_7720 000885395 3367_ $$2BibTeX$$aARTICLE 000885395 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885395 3367_ $$00$$2EndNote$$aJournal Article 000885395 520__ $$aWe present new observations of trace gases in the stratosphere based on a cost-effective sampling technique that can access much higher altitudes than aircraft. The further development of this method now provides detection of species with abundances in the parts per trillion (ppt) range and below. We obtain mixing ratios for six gases (CFC-11, CFC-12, HCFC-22, H-1211, H-1301, and SF6), all of which are important for understanding stratospheric ozone depletion and circulation. After demonstrating the quality of the data through comparisons with ground-based records and aircraft-based observations, we combine them with the latter to demonstrate its potential. We first compare the data with results from a global model driven by three widely used meteorological reanalyses. Secondly, we focus on CFC-11 as recent evidence has indicated renewed atmospheric emissions of that species relevant on a global scale. Because the stratosphere represents the main sink region for CFC-11, potential changes in stratospheric circulation and troposphere–stratosphere exchange fluxes have been identified as the largest source of uncertainty for the accurate quantification of such emissions. Our observations span over a decade (up until 2018) and therefore cover the period of the slowdown of CFC-11 global mixing ratio decreases measured at the Earth's surface. The spatial and temporal coverage of the observations is insufficient for a global quantitative analysis, but we do find some trends that are in contrast with expectations, indicating that the stratosphere may have contributed to the slower concentration decline in recent years. Further investigating the reanalysis-driven model data, we find that the dynamical changes in the stratosphere required to explain the apparent change in tropospheric CFC-11 emissions after 2013 are possible but with a very high uncertainty range. This is partly caused by the high variability of mass flux from the stratosphere to the troposphere, especially at timescales of a few years, and partly by large differences between runs driven by different reanalysis products, none of which agree with our observations well enough for such a quantitative analysis. 000885395 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0 000885395 588__ $$aDataset connected to CrossRef 000885395 7001_ $$0P:(DE-HGF)0$$aElvidge, Emma C. Leedham$$b1 000885395 7001_ $$00000-0002-8224-5399$$aAdcock, Karina E.$$b2 000885395 7001_ $$0P:(DE-HGF)0$$aBaier, Bianca$$b3 000885395 7001_ $$0P:(DE-HGF)0$$aBrenninkmeijer, Carl A. M.$$b4 000885395 7001_ $$00000-0002-1573-6673$$aChen, Huilin$$b5 000885395 7001_ $$00000-0002-3467-0083$$aDroste, Elise S.$$b6 000885395 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b7 000885395 7001_ $$0P:(DE-HGF)0$$aHeikkinen, Pauli$$b8 000885395 7001_ $$0P:(DE-HGF)0$$aHind, Andrew J.$$b9 000885395 7001_ $$00000-0001-8828-2759$$aKivi, Rigel$$b10 000885395 7001_ $$0P:(DE-HGF)0$$aLojko, Alexander$$b11 000885395 7001_ $$00000-0002-9396-0400$$aMontzka, Stephen A.$$b12 000885395 7001_ $$0P:(DE-HGF)0$$aOram, David E.$$b13 000885395 7001_ $$0P:(DE-HGF)0$$aRandall, Steve$$b14 000885395 7001_ $$00000-0002-6688-8968$$aRöckmann, Thomas$$b15 000885395 7001_ $$0P:(DE-HGF)0$$aSturges, William T.$$b16 000885395 7001_ $$00000-0002-4517-0797$$aSweeney, Colm$$b17 000885395 7001_ $$aThomas, Max$$b18 000885395 7001_ $$0P:(DE-Juel1)178873$$aTuffnell, Elinor$$b19$$ufzj 000885395 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b20$$ufzj 000885395 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-9771-2020$$gVol. 20, no. 16, p. 9771 - 9782$$n16$$p9771 - 9782$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020 000885395 8564_ $$uhttps://juser.fz-juelich.de/record/885395/files/invoice_Helmholtz-PUC-2020-89.pdf 000885395 8564_ $$uhttps://juser.fz-juelich.de/record/885395/files/acp-20-9771-2020.pdf$$yOpenAccess 000885395 8564_ $$uhttps://juser.fz-juelich.de/record/885395/files/invoice_Helmholtz-PUC-2020-89.pdf?subformat=pdfa$$xpdfa 000885395 8564_ $$uhttps://juser.fz-juelich.de/record/885395/files/acp-20-9771-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000885395 8767_ $$8Helmholtz-PUC-2020-89$$92020-10-01$$d2020-10-15$$eAPC$$jZahlung erfolgt$$pacp-2020-62$$zBelegnr. 1200158044 000885395 909CO $$ooai:juser.fz-juelich.de:885395$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire 000885395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177681$$aForschungszentrum Jülich$$b0$$kFZJ 000885395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b7$$kFZJ 000885395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178873$$aForschungszentrum Jülich$$b19$$kFZJ 000885395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b20$$kFZJ 000885395 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0 000885395 9141_ $$y2020 000885395 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18 000885395 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000885395 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885395 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18 000885395 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18 000885395 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18 000885395 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000885395 9801_ $$aAPC 000885395 9801_ $$aFullTexts 000885395 980__ $$ajournal 000885395 980__ $$aVDB 000885395 980__ $$aUNRESTRICTED 000885395 980__ $$aI:(DE-Juel1)IEK-7-20101013 000885395 980__ $$aAPC 000885395 981__ $$aI:(DE-Juel1)ICE-4-20101013