000885396 001__ 885396
000885396 005__ 20240712101052.0
000885396 0247_ $$2doi$$a10.5194/acp-20-10125-2020
000885396 0247_ $$2ISSN$$a1680-7316
000885396 0247_ $$2ISSN$$a1680-7324
000885396 0247_ $$2Handle$$a2128/27333
000885396 0247_ $$2WOS$$aWOS:000567769500001
000885396 037__ $$aFZJ-2020-03793
000885396 082__ $$a550
000885396 1001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b0
000885396 245__ $$aImpact of NOx on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: the role of highly oxygenated organic nitrates
000885396 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000885396 3367_ $$2DRIVER$$aarticle
000885396 3367_ $$2DataCite$$aOutput Types/Journal article
000885396 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620120516_2282
000885396 3367_ $$2BibTeX$$aARTICLE
000885396 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885396 3367_ $$00$$2EndNote$$aJournal Article
000885396 520__ $$aThe formation of organic nitrates (ONs) in the gas phase and their impact on mass formation of secondary organic aerosol (SOA) was investigated in a laboratory study for α-pinene and β-pinene photooxidation. Focus was the elucidation of those mechanisms that cause the often observed suppression of SOA mass formation by NOx, and therein the role of highly oxygenated multifunctional molecules (HOMs). We observed that with increasing NOx concentration (a) the portion of HOM organic nitrates (HOM-ONs) increased, (b) the fraction of accretion products (HOM-ACCs) decreased, and (c) HOM-ACCs contained on average smaller carbon numbers.Specifically, we investigated HOM organic nitrates (HOM-ONs), arising from the termination reactions of HOM peroxy radicals with NOx, and HOM permutation products (HOM-PPs), such as ketones, alcohols, or hydroperoxides, formed by other termination reactions. Effective uptake coefficients γeff of HOMs on particles were determined. HOMs with more than six O atoms efficiently condensed on particles (γeff>0.5 on average), and for HOMs containing more than eight O atoms, every collision led to loss. There was no systematic difference in γeff for HOM-ONs and HOM-PPs arising from the same HOM peroxy radicals. This similarity is attributed to the multifunctional character of the HOMs: as functional groups in HOMs arising from the same precursor HOM peroxy radical are identical, vapor pressures should not strongly depend on the character of the final termination group. As a consequence, the suppressing effect of NOx on SOA formation cannot be simply explained by replacement of terminal functional groups by organic nitrate groups.According to their γeff all HOM-ONs with more than six O atoms will contribute to organic bound nitrate (OrgNO3) in the particulate phase. However, the fraction of OrgNO3 stored in condensable HOMs with molecular masses > 230 Da appeared to be substantially higher than the fraction of particulate OrgNO3 observed by aerosol mass spectrometry. This result suggests losses of OrgNO3 for organic nitrates in particles, probably due to hydrolysis of OrgNO3 that releases HNO3 into the gas phase but leaves behind the organic rest in the particulate phase. However, the loss of HNO3 alone could not explain the observed suppressing effect of NOx on particle mass formation from α-pinene and β-pinene.Instead we can attribute most of the reduction in SOA mass yields with increasing NOx to the significant suppression of gas phase HOM-ACCs, which have high molecular mass and are potentially important for SOA mass formation at low-NOx conditions.
000885396 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000885396 588__ $$aDataset connected to CrossRef
000885396 7001_ $$0P:(DE-Juel1)161557$$aSchmitt, Sebastian$$b1
000885396 7001_ $$0P:(DE-Juel1)169671$$aKang, Sungah$$b2
000885396 7001_ $$00000-0002-4151-5997$$aSarrafzadeh, Mehrnaz$$b3
000885396 7001_ $$0P:(DE-Juel1)4548$$aSchlag, Patrick$$b4
000885396 7001_ $$0P:(DE-Juel1)6627$$aAndres, Stefanie$$b5$$ufzj
000885396 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b6
000885396 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b7$$eCorresponding author
000885396 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b8$$ufzj
000885396 7001_ $$0P:(DE-Juel1)142073$$aSpringer, Monika$$b9
000885396 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b10$$ufzj
000885396 7001_ $$0P:(DE-Juel1)129421$$aWildt, Jürgen$$b11
000885396 7001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b12
000885396 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b13
000885396 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b14
000885396 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b15
000885396 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-10125-2020$$gVol. 20, no. 17, p. 10125 - 10147$$n17$$p10125 - 10147$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000885396 8564_ $$uhttps://juser.fz-juelich.de/record/885396/files/invoice_Helmholtz-PUC-2020-89.pdf
000885396 8564_ $$uhttps://juser.fz-juelich.de/record/885396/files/acp-20-10125-2020.pdf$$yOpenAccess
000885396 8564_ $$uhttps://juser.fz-juelich.de/record/885396/files/invoice_Helmholtz-PUC-2020-89.pdf?subformat=pdfa$$xpdfa
000885396 8564_ $$uhttps://juser.fz-juelich.de/record/885396/files/acp-20-10125-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885396 8767_ $$8Helmholtz-PUC-2020-89$$92020-10-01$$d2020-10-15$$eAPC$$jZahlung erfolgt$$pacp-2019-1168$$zBelegnr. 1200158044
000885396 909CO $$ooai:juser.fz-juelich.de:885396$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161557$$aForschungszentrum Jülich$$b1$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169671$$aForschungszentrum Jülich$$b2$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6627$$aForschungszentrum Jülich$$b5$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich$$b6$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b7$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b8$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b10$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b14$$kFZJ
000885396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b15$$kFZJ
000885396 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000885396 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885396 9141_ $$y2020
000885396 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000885396 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885396 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885396 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000885396 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000885396 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000885396 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000885396 9801_ $$aAPC
000885396 9801_ $$aFullTexts
000885396 980__ $$ajournal
000885396 980__ $$aVDB
000885396 980__ $$aI:(DE-Juel1)IEK-8-20101013
000885396 980__ $$aAPC
000885396 980__ $$aUNRESTRICTED
000885396 981__ $$aI:(DE-Juel1)ICE-3-20101013