000885415 001__ 885415
000885415 005__ 20230426083222.0
000885415 0247_ $$2doi$$a10.1103/PhysRevB.101.205128
000885415 0247_ $$2ISSN$$a0163-1829
000885415 0247_ $$2ISSN$$a0556-2805
000885415 0247_ $$2ISSN$$a1050-2947
000885415 0247_ $$2ISSN$$a1094-1622
000885415 0247_ $$2ISSN$$a1095-3795
000885415 0247_ $$2ISSN$$a1098-0121
000885415 0247_ $$2ISSN$$a1538-4446
000885415 0247_ $$2ISSN$$a1538-4489
000885415 0247_ $$2ISSN$$a1550-235X
000885415 0247_ $$2ISSN$$a2469-9950
000885415 0247_ $$2ISSN$$a2469-9969
000885415 0247_ $$2ISSN$$a2469-9977
000885415 037__ $$aFZJ-2020-03812
000885415 082__ $$a530
000885415 1001_ $$0P:(DE-Juel1)144464$$aZhang, Guoren$$b0
000885415 245__ $$aHiggs mode and stability of x y -orbital ordering in Ca 2 RuO 4
000885415 260__ $$aWoodbury, NY$$c2020
000885415 3367_ $$2DRIVER$$aarticle
000885415 3367_ $$2DataCite$$aOutput Types/Journal article
000885415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619270019_779
000885415 3367_ $$2BibTeX$$aARTICLE
000885415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885415 3367_ $$00$$2EndNote$$aJournal Article
000885415 520__ $$aWe investigate the stability of xy orbital ordering and the nature of the magnetic longitudinal excitations in $Ca_{2}RuO_{4}$. To this end, we employ the local-density approximation + dynamical mean-field theory approach, in combination with many-body perturbation theory. We show that the crossover to a nonperturbative spin-orbit regime—-in which xy-like orbital ordering is to a large extent quenched—only takes place when the crystal field is sizably reduced with respect to its actual value in $Ca_{2}RuO_{4}$. In the small crystal-field splitting limit, the spin-orbit interaction favors the metal-to-insulator transition. We find that the effects of the spin-orbit interaction remain perturbative even for the less distorted $Ca_{2−x}Sr_xRuO_4$ with 0< x<0,2 ($S$-Pbca phase) and for the $S^∗$ phase. We show that, nevertheless, a Higgs mode at ω∼50meV is compatible with xy-like orbital ordering in $Ca_{2}RuO_{4}$.
000885415 536__ $$0G:(DE-Juel1)jiff46_20191101$$aCharge-transfer effects in multi-orbital correlated systems (jiff46_20191101)$$cjiff46_20191101$$fCharge-transfer effects in multi-orbital correlated systems$$x0
000885415 542__ $$2Crossref$$i2020-05-18$$uhttps://link.aps.org/licenses/aps-default-license
000885415 588__ $$aDataset connected to CrossRef
000885415 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b1$$ufzj
000885415 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.101.205128$$bAmerican Physical Society (APS)$$d2020-05-18$$n20$$p205128$$tPhysical Review B$$v101$$x2469-9950$$y2020
000885415 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.101.205128$$gVol. 101, no. 20, p. 205128$$n20$$p205128$$tPhysical review / B$$v101$$x2469-9950$$y2020
000885415 909CO $$ooai:juser.fz-juelich.de:885415$$pextern4vita
000885415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b1$$kFZJ
000885415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885415 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885415 920__ $$lyes
000885415 980__ $$ajournal
000885415 980__ $$aUSER
000885415 980__ $$aI:(DE-Juel1)JSC-20090406
000885415 980__ $$aI:(DE-82)080012_20140620
000885415 9801_ $$aEXTERN4VITA
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.247201
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.214408
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys4077
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.067201
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.226401
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.075145
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssr.201800211
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.125142
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.045123
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.R2916
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.R8422
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.847
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.R5053
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.174432
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.197201
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.035137
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.136401
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.045119
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.056403
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms15176
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.057203
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.137204
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.76.073709
000885415 999C5 $$1E. Pavarini$$2Crossref$$oE. Pavarini The LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.096401
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5007680
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.094104
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.035122
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.106402
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.126401
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.125102
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.9.021048
000885415 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-06945-0