000885418 001__ 885418
000885418 005__ 20210424152400.0
000885418 0247_ $$2doi$$a10.1039/C8SC00163D
000885418 0247_ $$2ISSN$$a2041-6520
000885418 0247_ $$2ISSN$$a2041-6539
000885418 037__ $$aFZJ-2020-03815
000885418 082__ $$a540
000885418 1001_ $$00000-0002-0370-0534$$aGarlatti, Elena$$b0
000885418 245__ $$aAnisotropy of Co II transferred to the Cr 7 Co polymetallic cluster via strong exchange interactions
000885418 260__ $$aCambridge$$bRSC$$c2018
000885418 3367_ $$2DRIVER$$aarticle
000885418 3367_ $$2DataCite$$aOutput Types/Journal article
000885418 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619270523_32447
000885418 3367_ $$2BibTeX$$aARTICLE
000885418 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885418 3367_ $$00$$2EndNote$$aJournal Article
000885418 520__ $$aThe $Cr_7Co$ ring represents a model system to understand how the anisotropy of a $Co^{II}$ ion is transferred to the effective anisotropy of a polymetallic cluster by strong exchange interactions. Combining sizeable anisotropy with exchange interactions is an important point in the understanding and design of new anisotropic molecular nanomagnets addressing fundamental and applicative issues. By combining electron paramagnetic resonance and inelastic neutron scattering measurements with spin Hamiltonian and ab initio calculations, we have investigated in detail the anisotropy of the $Co^{II}$ ion embedded in the antiferromagnetic ring. Our results demonstrate a strong and anisotropic exchange interaction between the Co and the neighbouring Cr ions, which effectively transmits the anisotropy to the whole molecule.
000885418 536__ $$0G:(DE-Juel1)jiff46_20161101$$aSpin-orbital order-disorder transitions in strongly correlated systems (jiff46_20161101)$$cjiff46_20161101$$fSpin-orbital order-disorder transitions in strongly correlated systems$$x0
000885418 588__ $$aDataset connected to CrossRef
000885418 7001_ $$00000-0001-9320-2960$$aGuidi, Tatiana$$b1
000885418 7001_ $$0P:(DE-Juel1)162337$$aChiesa, Alessandro$$b2
000885418 7001_ $$0P:(DE-HGF)0$$aAnsbro, Simon$$b3
000885418 7001_ $$0P:(DE-HGF)0$$aBaker, Michael L.$$b4
000885418 7001_ $$0P:(DE-HGF)0$$aOllivier, Jacques$$b5
000885418 7001_ $$0P:(DE-HGF)0$$aMutka, Hannu$$b6
000885418 7001_ $$00000-0003-0966-0315$$aTimco, Grigore A.$$b7
000885418 7001_ $$0P:(DE-HGF)0$$aVitorica-Yrezabal, Inigo$$b8
000885418 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b9$$ufzj
000885418 7001_ $$0P:(DE-HGF)0$$aSantini, Paolo$$b10
000885418 7001_ $$0P:(DE-HGF)0$$aAmoretti, Giuseppe$$b11
000885418 7001_ $$00000-0002-7101-3963$$aWinpenny, Richard E. P.$$b12
000885418 7001_ $$00000-0002-2536-1326$$aCarretta, Stefano$$b13
000885418 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/C8SC00163D$$gVol. 9, no. 14, p. 3555 - 3562$$n14$$p3555 - 3562$$tChemical science$$v9$$x2041-6539$$y2018
000885418 909CO $$ooai:juser.fz-juelich.de:885418$$pextern4vita
000885418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b9$$kFZJ
000885418 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-12$$wger
000885418 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-12
000885418 915__ $$0LIC:(DE-HGF)CCBYNCNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial CC BY-NC (No Version)$$bDOAJ$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2018$$d2020-01-12
000885418 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2018$$d2020-01-12
000885418 980__ $$ajournal
000885418 980__ $$aUSER
000885418 980__ $$aI:(DE-Juel1)JSC-20090406
000885418 980__ $$aI:(DE-82)080012_20140620
000885418 9801_ $$aEXTERN4VITA