000885475 001__ 885475
000885475 005__ 20210424140209.0
000885475 0247_ $$2doi$$a10.1088/1361-648X/ab7d64
000885475 0247_ $$2ISSN$$a0953-8984
000885475 0247_ $$2ISSN$$a1361-648X
000885475 037__ $$aFZJ-2020-03858
000885475 082__ $$a530
000885475 1001_ $$00000-0002-8260-4793$$aKoettgen, Julius$$b0
000885475 245__ $$aThe oxygen ion conductivity of Lu doped ceria
000885475 260__ $$aBristol$$bIOP Publ.$$c2020
000885475 3367_ $$2DRIVER$$aarticle
000885475 3367_ $$2DataCite$$aOutput Types/Journal article
000885475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619265653_32447
000885475 3367_ $$2BibTeX$$aARTICLE
000885475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885475 3367_ $$00$$2EndNote$$aJournal Article
000885475 520__ $$aThe oxygen ion conductivity of polycrystalline samples of Lu doped ceria is studied using impedance spectroscopy. Lutetium doped ceria is of particular interest as Lu has a similar ionic radius as the host cation Ce. The change of the ionic conductivity as a function of the Lu dopant fraction is investigated in detail revealing a similar behavior as Sm doped ceria that has one of the highest ionic conductivity in ternary cerium oxides. In comparison with simulations, the experimental dependence of the conductivity on the dopant fraction reveals that migration barriers for oxygen vacancy jumps around Lu ions are slightly higher than for jumps in pure ceria. The absolute conductivity is small due to the strong trapping of oxygen vacancies near Lu dopants.
000885475 536__ $$0G:(DE-Juel1)jara0035_20141101$$aAb-initio study of structure, conductivity and thermodynamics of doped and non-stoichiometric ceria (jara0035_20141101)$$cjara0035_20141101$$fAb-initio study of structure, conductivity and thermodynamics of doped and non-stoichiometric ceria$$x0
000885475 588__ $$aDataset connected to CrossRef
000885475 7001_ $$0P:(DE-Juel1)178009$$aDück, Gerald$$b1$$ufzj
000885475 7001_ $$aMartin, Manfred$$b2
000885475 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab7d64$$gVol. 32, no. 26, p. 265402 -$$n26$$p265402 -$$tJournal of physics / Condensed matter$$v32$$x1361-648X$$y2020
000885475 909CO $$ooai:juser.fz-juelich.de:885475$$pextern4vita
000885475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178009$$aForschungszentrum Jülich$$b1$$kFZJ
000885475 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000885475 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000885475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2018$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000885475 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000885475 980__ $$ajournal
000885475 980__ $$aUSER
000885475 980__ $$aI:(DE-Juel1)JSC-20090406
000885475 980__ $$aI:(DE-82)080012_20140620
000885475 9801_ $$aEXTERN4VITA