000885521 001__ 885521
000885521 005__ 20240712100843.0
000885521 0247_ $$2doi$$a10.5194/acp-20-11469-2020
000885521 0247_ $$2ISSN$$a1680-7316
000885521 0247_ $$2ISSN$$a1680-7324
000885521 0247_ $$2Handle$$a2128/25867
000885521 0247_ $$2altmetric$$aaltmetric:91915554
000885521 0247_ $$2WOS$$aWOS:000578985500001
000885521 037__ $$aFZJ-2020-03901
000885521 041__ $$aEnglish
000885521 082__ $$a550
000885521 1001_ $$0P:(DE-Juel1)180608$$aKrisch, Isabell$$b0$$eCorresponding author$$ufzj
000885521 245__ $$aSuperposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
000885521 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000885521 3367_ $$2DRIVER$$aarticle
000885521 3367_ $$2DataCite$$aOutput Types/Journal article
000885521 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608728421_18267
000885521 3367_ $$2BibTeX$$aARTICLE
000885521 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885521 3367_ $$00$$2EndNote$$aJournal Article
000885521 520__ $$aMany gravity wave analyses, based on either observations or model simulations, assume the presence of only a single dominant wave. This paper shows that there are much more complex cases with gravity waves from multiple sources crossing each others' paths. A complex gravity wave structure consisting of a superposition of multiple wave packets was observed above southern Scandinavia on 28 January 2016 with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA). The tomographic measurement capability of GLORIA enabled a detailed 3-D reconstruction of the gravity wave field and the identification of multiple wave packets with different horizontal and vertical scales. The larger-scale gravity waves with horizontal wavelengths of around 400 km could be characterised using a 3-D wave-decomposition method. The smaller-scale wave components with horizontal wavelengths below 200 km were discussed by visual inspection. For the larger-scale gravity wave components, a combination of gravity-wave ray-tracing calculations and ERA5 reanalysis fields identified orography as well as a jet-exit region and a low-pressure system as possible sources. All gravity waves are found to propagate upward into the middle stratosphere, but only the orographic waves stay directly above their source. The comparison with ERA5 also shows that ray tracing provides reasonable results even for such complex cases with multiple overlapping wave packets. Despite their coarser vertical resolution compared to GLORIA measurements, co-located AIRS measurements in the middle stratosphere are in good agreement with the ray tracing and ERA5 results, proving once more the validity of simple ray-tracing models. Thus, this paper demonstrates that the high-resolution GLORIA observations in combination with simple ray-tracing calculations can provide an important source of information for enhancing our understanding of gravity wave propagation.
000885521 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000885521 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000885521 588__ $$aDataset connected to CrossRef
000885521 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000885521 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000885521 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3
000885521 7001_ $$0P:(DE-Juel1)169715$$aStrube, Cornelia$$b4
000885521 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b5
000885521 7001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b6
000885521 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000885521 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-11469-2020$$gVol. 20, no. 19, p. 11469 - 11490$$n19$$p11469 - 11490$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000885521 8564_ $$uhttps://juser.fz-juelich.de/record/885521/files/invoice_Helmholtz-PUC-2020-122.pdf
000885521 8564_ $$uhttps://juser.fz-juelich.de/record/885521/files/acp-20-11469-2020%281%29.pdf$$yOpenAccess
000885521 8564_ $$uhttps://juser.fz-juelich.de/record/885521/files/acp-20-11469-2020%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885521 8767_ $$8Helmholtz-PUC-2020-122$$92020-12-23$$d2021-01-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200161460
000885521 909CO $$ooai:juser.fz-juelich.de:885521$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180608$$aForschungszentrum Jülich$$b0$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169715$$aForschungszentrum Jülich$$b4$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b5$$kFZJ
000885521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000885521 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000885521 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000885521 9141_ $$y2020
000885521 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000885521 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885521 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885521 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000885521 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000885521 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000885521 920__ $$lyes
000885521 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000885521 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000885521 9801_ $$aFullTexts
000885521 980__ $$ajournal
000885521 980__ $$aVDB
000885521 980__ $$aI:(DE-Juel1)IEK-7-20101013
000885521 980__ $$aI:(DE-Juel1)JSC-20090406
000885521 980__ $$aUNRESTRICTED
000885521 980__ $$aAPC
000885521 981__ $$aI:(DE-Juel1)ICE-4-20101013