Journal Article FZJ-2020-03901

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders

 ;  ;  ;  ;  ;  ;  ;

2020
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 20(19), 11469 - 11490 () [10.5194/acp-20-11469-2020]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Many gravity wave analyses, based on either observations or model simulations, assume the presence of only a single dominant wave. This paper shows that there are much more complex cases with gravity waves from multiple sources crossing each others' paths. A complex gravity wave structure consisting of a superposition of multiple wave packets was observed above southern Scandinavia on 28 January 2016 with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA). The tomographic measurement capability of GLORIA enabled a detailed 3-D reconstruction of the gravity wave field and the identification of multiple wave packets with different horizontal and vertical scales. The larger-scale gravity waves with horizontal wavelengths of around 400 km could be characterised using a 3-D wave-decomposition method. The smaller-scale wave components with horizontal wavelengths below 200 km were discussed by visual inspection. For the larger-scale gravity wave components, a combination of gravity-wave ray-tracing calculations and ERA5 reanalysis fields identified orography as well as a jet-exit region and a low-pressure system as possible sources. All gravity waves are found to propagate upward into the middle stratosphere, but only the orographic waves stay directly above their source. The comparison with ERA5 also shows that ray tracing provides reasonable results even for such complex cases with multiple overlapping wave packets. Despite their coarser vertical resolution compared to GLORIA measurements, co-located AIRS measurements in the middle stratosphere are in good agreement with the ray tracing and ERA5 results, proving once more the validity of simple ray-tracing models. Thus, this paper demonstrates that the high-resolution GLORIA observations in combination with simple ray-tracing calculations can provide an important source of information for enhancing our understanding of gravity wave propagation.

Classification:

Contributing Institute(s):
  1. Stratosphäre (IEK-7)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) (POF3-244)
  2. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-4
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
IEK > IEK-7
Publications database
Open Access

 Record created 2020-10-08, last modified 2024-07-12