000885649 001__ 885649 000885649 005__ 20240711092244.0 000885649 0247_ $$2doi$$a10.1016/j.energy.2019.116736 000885649 0247_ $$2ISSN$$a0360-5442 000885649 0247_ $$2ISSN$$a1873-6785 000885649 0247_ $$2Handle$$a2128/25886 000885649 0247_ $$2WOS$$aWOS:000518699000084 000885649 037__ $$aFZJ-2020-03980 000885649 082__ $$a600 000885649 1001_ $$0P:(DE-HGF)0$$aSurup, Gerrit Ralf$$b0 000885649 245__ $$aEffect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries 000885649 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000885649 3367_ $$2DRIVER$$aarticle 000885649 3367_ $$2DataCite$$aOutput Types/Journal article 000885649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602764727_1065 000885649 3367_ $$2BibTeX$$aARTICLE 000885649 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885649 3367_ $$00$$2EndNote$$aJournal Article 000885649 520__ $$aThis study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyrolysis, whereas the structure, composition and electrical resistance of silica composite pellets remained unaffected by heat treatment temperatures 1650 °C. However, the secondary heat treatment decreased the CO2 gasification reactivity and electrical resistivity of charcoal composite pellets. In addition, the findings of this work demonstrate the potential for using biooil as a binder for the charcoal composite pellets used in ferroalloy industries. The composite pellets are suitable to pre-reduce the manganese ore in the low temperature zones of an industrial furnace, and the charcoal pellets can be used as an alternative bed material. However, the high CO2 reactivity may create challenges during the direct replacement of metallurgical coke with the bio-reductants. 000885649 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000885649 588__ $$aDataset connected to CrossRef 000885649 7001_ $$0P:(DE-HGF)0$$aNielsen, Henrik Kofoed$$b1 000885649 7001_ $$0P:(DE-HGF)0$$aGroßarth, Marius$$b2 000885649 7001_ $$0P:(DE-HGF)0$$aDeike, Rüdiger$$b3 000885649 7001_ $$0P:(DE-HGF)0$$aVan den Bulcke, Jan$$b4 000885649 7001_ $$0P:(DE-HGF)0$$aKibleur, Pierre$$b5 000885649 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6 000885649 7001_ $$0P:(DE-Juel1)129815$$aZiegner, Mirko$$b7 000885649 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b8 000885649 7001_ $$0P:(DE-HGF)0$$aBeloshapkin, Sergey$$b9 000885649 7001_ $$0P:(DE-HGF)0$$aLeahy, James J.$$b10 000885649 7001_ $$00000-0002-6571-3277$$aTrubetskaya, Anna$$b11$$eCorresponding author 000885649 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2019.116736$$gVol. 193, p. 116736 -$$p116736 -$$tEnergy$$v193$$x0360-5442$$y2020 000885649 8564_ $$uhttps://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf$$yOpenAccess 000885649 8564_ $$uhttps://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000885649 909CO $$ooai:juser.fz-juelich.de:885649$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b6$$kFZJ 000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129815$$aForschungszentrum Jülich$$b7$$kFZJ 000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b8$$kFZJ 000885649 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000885649 9141_ $$y2020 000885649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2018$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885649 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2018$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10 000885649 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger 000885649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10 000885649 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000885649 9801_ $$aFullTexts 000885649 980__ $$ajournal 000885649 980__ $$aVDB 000885649 980__ $$aUNRESTRICTED 000885649 980__ $$aI:(DE-Juel1)IEK-2-20101013 000885649 981__ $$aI:(DE-Juel1)IMD-1-20101013