000885649 001__ 885649
000885649 005__ 20240711092244.0
000885649 0247_ $$2doi$$a10.1016/j.energy.2019.116736
000885649 0247_ $$2ISSN$$a0360-5442
000885649 0247_ $$2ISSN$$a1873-6785
000885649 0247_ $$2Handle$$a2128/25886
000885649 0247_ $$2WOS$$aWOS:000518699000084
000885649 037__ $$aFZJ-2020-03980
000885649 082__ $$a600
000885649 1001_ $$0P:(DE-HGF)0$$aSurup, Gerrit Ralf$$b0
000885649 245__ $$aEffect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries
000885649 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000885649 3367_ $$2DRIVER$$aarticle
000885649 3367_ $$2DataCite$$aOutput Types/Journal article
000885649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602764727_1065
000885649 3367_ $$2BibTeX$$aARTICLE
000885649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885649 3367_ $$00$$2EndNote$$aJournal Article
000885649 520__ $$aThis study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyrolysis, whereas the structure, composition and electrical resistance of silica composite pellets remained unaffected by heat treatment temperatures 1650 °C. However, the secondary heat treatment decreased the CO2 gasification reactivity and electrical resistivity of charcoal composite pellets. In addition, the findings of this work demonstrate the potential for using biooil as a binder for the charcoal composite pellets used in ferroalloy industries. The composite pellets are suitable to pre-reduce the manganese ore in the low temperature zones of an industrial furnace, and the charcoal pellets can be used as an alternative bed material. However, the high CO2 reactivity may create challenges during the direct replacement of metallurgical coke with the bio-reductants.
000885649 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000885649 588__ $$aDataset connected to CrossRef
000885649 7001_ $$0P:(DE-HGF)0$$aNielsen, Henrik Kofoed$$b1
000885649 7001_ $$0P:(DE-HGF)0$$aGroßarth, Marius$$b2
000885649 7001_ $$0P:(DE-HGF)0$$aDeike, Rüdiger$$b3
000885649 7001_ $$0P:(DE-HGF)0$$aVan den Bulcke, Jan$$b4
000885649 7001_ $$0P:(DE-HGF)0$$aKibleur, Pierre$$b5
000885649 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6
000885649 7001_ $$0P:(DE-Juel1)129815$$aZiegner, Mirko$$b7
000885649 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b8
000885649 7001_ $$0P:(DE-HGF)0$$aBeloshapkin, Sergey$$b9
000885649 7001_ $$0P:(DE-HGF)0$$aLeahy, James J.$$b10
000885649 7001_ $$00000-0002-6571-3277$$aTrubetskaya, Anna$$b11$$eCorresponding author
000885649 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2019.116736$$gVol. 193, p. 116736 -$$p116736 -$$tEnergy$$v193$$x0360-5442$$y2020
000885649 8564_ $$uhttps://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf$$yOpenAccess
000885649 8564_ $$uhttps://juser.fz-juelich.de/record/885649/files/Surup%20Energy%20193%20%282020%29%20116736%20Manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885649 909CO $$ooai:juser.fz-juelich.de:885649$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b6$$kFZJ
000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129815$$aForschungszentrum Jülich$$b7$$kFZJ
000885649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b8$$kFZJ
000885649 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000885649 9141_ $$y2020
000885649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2018$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885649 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2018$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000885649 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000885649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000885649 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000885649 9801_ $$aFullTexts
000885649 980__ $$ajournal
000885649 980__ $$aVDB
000885649 980__ $$aUNRESTRICTED
000885649 980__ $$aI:(DE-Juel1)IEK-2-20101013
000885649 981__ $$aI:(DE-Juel1)IMD-1-20101013