000885723 001__ 885723
000885723 005__ 20240313103122.0
000885723 0247_ $$2doi$$a10.1371/journal.pcbi.1008127
000885723 0247_ $$2ISSN$$a1553-734X
000885723 0247_ $$2ISSN$$a1553-7358
000885723 0247_ $$2Handle$$a2128/26730
000885723 0247_ $$2altmetric$$aaltmetric:92256983
000885723 0247_ $$2pmid$$a33044953
000885723 0247_ $$2WOS$$aWOS:000581784900003
000885723 037__ $$aFZJ-2020-04035
000885723 082__ $$a610
000885723 1001_ $$0P:(DE-Juel1)184621$$aGilson, Matthieu$$b0$$eCorresponding author$$ufzj
000885723 245__ $$aThe covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks
000885723 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2020
000885723 3367_ $$2DRIVER$$aarticle
000885723 3367_ $$2DataCite$$aOutput Types/Journal article
000885723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610461054_27206
000885723 3367_ $$2BibTeX$$aARTICLE
000885723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885723 3367_ $$00$$2EndNote$$aJournal Article
000885723 520__ $$aLearning in neuronal networks has developed in many directions, in particular to reproduce cognitive tasks like image recognition and speech processing. Implementations have been inspired by stereotypical neuronal responses like tuning curves in the visual system, where, for example, ON/OFF cells fire or not depending on the contrast in their receptive fields. Classical models of neuronal networks therefore map a set of input signals to a set of activity levels in the output of the network. Each category of inputs is thereby predominantly characterized by its mean. In the case of time series, fluctuations around this mean constitute noise in this view. For this paradigm, the high variability exhibited by the cortical activity may thus imply limitations or constraints, which have been discussed for many years. For example, the need for averaging neuronal activity over long periods or large groups of cells to assess a robust mean and to diminish the effect of noise correlations. To reconcile robust computations with variable neuronal activity, we here propose a conceptual change of perspective by employing variability of activity as the basis for stimulus-related information to be learned by neurons, rather than merely being the noise that corrupts the mean signal. In this new paradigm both afferent and recurrent weights in a network are tuned to shape the input-output mapping for covariances, the second-order statistics of the fluctuating activity. When including time lags, covariance patterns define a natural metric for time series that capture their propagating nature. We develop the theory for classification of time series based on their spatio-temporal covariances, which reflect dynamical properties. We demonstrate that recurrent connectivity is able to transform information contained in the temporal structure of the signal into spatial covariances. Finally, we use the MNIST database to show how the covariance perceptron can capture specific second-order statistical patterns generated by moving digits.
000885723 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000885723 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000885723 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x2
000885723 536__ $$0G:(DE-82)EXS-SF-neuroIC002$$aneuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)$$cEXS-SF-neuroIC002$$x3
000885723 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000885723 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x5
000885723 588__ $$aDataset connected to CrossRef
000885723 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b1
000885723 7001_ $$0P:(DE-HGF)0$$aMoreno-Bote, Rubén$$b2
000885723 7001_ $$00000-0003-1395-2724$$aInsabato, Andrea$$b3
000885723 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b4
000885723 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1008127$$gVol. 16, no. 10, p. e1008127 -$$n10$$pe1008127$$tPLoS Computational Biology$$v16$$x1553-7358$$y2020
000885723 8564_ $$uhttps://juser.fz-juelich.de/record/885723/files/Invoice_PAB307207_1601932356015.pdf
000885723 8564_ $$uhttps://juser.fz-juelich.de/record/885723/files/Invoice_PAB307207_1601932356015.pdf?subformat=pdfa$$xpdfa
000885723 8564_ $$uhttps://juser.fz-juelich.de/record/885723/files/pcbi.1008127.pdf$$yOpenAccess
000885723 8767_ $$8PAB307207$$92020-10-02$$d2020-11-20$$eAPC$$jZahlung erfolgt$$zUSD 2.350 / Belegnr. 1200159833
000885723 909CO $$ooai:juser.fz-juelich.de:885723$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000885723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184621$$aForschungszentrum Jülich$$b0$$kFZJ
000885723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b1$$kFZJ
000885723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b4$$kFZJ
000885723 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000885723 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000885723 9141_ $$y2020
000885723 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2018$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885723 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-05
000885723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000885723 920__ $$lno
000885723 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000885723 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000885723 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000885723 9801_ $$aAPC
000885723 9801_ $$aFullTexts
000885723 980__ $$ajournal
000885723 980__ $$aVDB
000885723 980__ $$aUNRESTRICTED
000885723 980__ $$aI:(DE-Juel1)INM-6-20090406
000885723 980__ $$aI:(DE-Juel1)IAS-6-20130828
000885723 980__ $$aI:(DE-Juel1)INM-10-20170113
000885723 980__ $$aAPC
000885723 981__ $$aI:(DE-Juel1)IAS-6-20130828