001     885767
005     20240610120455.0
024 7 _ |a 10.1016/j.ultramic.2020.113098
|2 doi
024 7 _ |a 0304-3991
|2 ISSN
024 7 _ |a 1879-2723
|2 ISSN
024 7 _ |a 2128/26584
|2 Handle
024 7 _ |a 33161222
|2 pmid
024 7 _ |a WOS:000600833500013
|2 WOS
037 _ _ |a FZJ-2020-04075
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Diehle, Patrick
|0 P:(DE-Juel1)162274
|b 0
|e Corresponding author
245 _ _ |a A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope
260 _ _ |a Amsterdam
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608542156_32063
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic induction mapping in the transmission electron microscope using phase contrast techniques such as off-axis electron holography and differential phase contrast imaging often requires the separation of the magnetic contribution to the recorded signal from the electrostatic contribution. When using off-axis electron holography, one of the experimental approaches that can be used to achieve this separation is to evaluate half of the difference between phase shift images that have been recorded before and after turning the sample over. Here, we introduce a cartridge-based sample mounting system, which is based on an existing on-axis tomography specimen holder and can be used to turn a sample over inside the electron microscope, thereby avoiding the need to remove the holder from the microscope to turn the sample over manually. We present three cartridge designs, which are compatible with all pole piece designs and can be used to support conventional 3-mm-diameter sample grids, Si3N4-based membrane chips and needle-shaped specimens. We make use of a wireless inclinometer that has a precision of 0.1° to monitor the sample holder tilt angle independently of the microscope goniometer readout. We also highlight the need to remove geometrical image distortions when aligning pairs of phase shift images that have been recorded before and after turning the sample over. The capabilities of the cartridge-based specimen holder and the turning approach are demonstrated by using off-axis electron holography to record magnetic induction maps of lithographically-patterned soft magnetic Co elements, a focused ion beam milled hard magnetic Nd-Fe-B lamella and an array of four Fe3O4 nanocrystals.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 2
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 1
|u fzj
700 1 _ |a Duden, Thomas
|0 P:(DE-Juel1)159364
|b 2
700 1 _ |a Speen, Rolf
|0 P:(DE-Juel1)130980
|b 3
700 1 _ |a Žagar Soderžnik, Kristina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 5
|u fzj
773 _ _ |a 10.1016/j.ultramic.2020.113098
|g p. 113098 -
|0 PERI:(DE-600)1479043-9
|p 113098 -
|t Ultramicroscopy
|v 14
|y 2020
|x 0304-3991
856 4 _ |u https://juser.fz-juelich.de/record/885767/files/Turning_Holder_manuscript.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885767/files/1-s2.0-S0304399120302497-main.pdf
909 C O |o oai:juser.fz-juelich.de:885767
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162274
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ULTRAMICROSCOPY : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21