000885795 001__ 885795
000885795 005__ 20230111074231.0
000885795 0247_ $$2doi$$a10.1002/adfm.202004744
000885795 0247_ $$2ISSN$$a1057-9257
000885795 0247_ $$2ISSN$$a1099-0712
000885795 0247_ $$2ISSN$$a1616-301X
000885795 0247_ $$2ISSN$$a1616-3028
000885795 0247_ $$2Handle$$a2128/26762
000885795 0247_ $$2WOS$$aWOS:000572983200001
000885795 037__ $$aFZJ-2020-04092
000885795 082__ $$a530
000885795 1001_ $$0P:(DE-HGF)0$$aZhai, Yuan‐Qi$$b0
000885795 245__ $$aReentrant Spin Glass and Large Coercive Field Observed in a Spin Integer Dimerized Honeycomb Lattice
000885795 260__ $$aWeinheim$$bWiley-VCH$$c2021
000885795 3367_ $$2DRIVER$$aarticle
000885795 3367_ $$2DataCite$$aOutput Types/Journal article
000885795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636722814_21151
000885795 3367_ $$2BibTeX$$aARTICLE
000885795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885795 3367_ $$00$$2EndNote$$aJournal Article
000885795 520__ $$a2D magnetic materials with dimerized honeycomb lattices can be treated as mixed‐spin square lattices, in which a quantum phase transition may occur to realize the Bose–Einstein condensation of magnons under reachable experimental conditions. However, this has never been successfully realized with integer spin centers. Herein, a spin integer (S = 2) dimerized honeycomb lattice in an iron(II)‐azido compound [Fe(4‐etpy)2(N3)2]n (FEN, 4‐etpy = 4‐ethylpyridine) is realized. Morphology characterization by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy spectroscopies show that the thinnest place of the sample is ≈13 nm, which is equal to ten layers of the compound. In contrast to the common magnetic properties of long‐range magnetic ordering, Mössbauer and polarized neutron scattering studies reveal that FEN exhibits a reentrant spin glass behavior owing to competing ferro‐ and antiferromagnetic exchange‐coupling interactions within the lattice. Two spin glass phases with disparate canting angles are characterized at 39 and 28 K, respectively. By using Curély's model, two exchange‐coupling constants (J1 = +35.8 cm−1 and J2 = −3.7 cm−1) can be simulated. Moreover, a very large coercive field of ≈1.9 Tesla is observed at 2 K, making FEN a “very hard” van der Waals 2D magnetic material.
000885795 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000885795 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x1
000885795 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000885795 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000885795 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x4
000885795 588__ $$aDataset connected to CrossRef
000885795 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000885795 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000885795 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000885795 7001_ $$0P:(DE-HGF)0$$aDeng, Yi‐Fei$$b1
000885795 7001_ $$0P:(DE-HGF)0$$aFu, Zhendong$$b2$$eCorresponding author
000885795 7001_ $$0P:(DE-Juel1)159565$$aFeng, Erxi$$b3
000885795 7001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b4$$ufzj
000885795 7001_ $$0P:(DE-HGF)0$$aShiga, Takuya$$b5
000885795 7001_ $$0P:(DE-HGF)0$$aOshio, Hiroki$$b6
000885795 7001_ $$0P:(DE-HGF)0$$aZheng, Yan‐Zhen$$b7$$eCorresponding author
000885795 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202004744$$gp. 2004744 -$$n1$$p2004744$$tAdvanced functional materials$$v31$$x1616-3028$$y2021
000885795 8564_ $$uhttps://juser.fz-juelich.de/record/885795/files/adfm.202004744.pdf$$yRestricted
000885795 8564_ $$uhttps://juser.fz-juelich.de/record/885795/files/fu_AFM-Fe_layer.pdf$$yPublished on 2020-09-28. Available in OpenAccess from 2021-09-28.
000885795 8564_ $$uhttps://juser.fz-juelich.de/record/885795/files/fu_AFM-Fe_layer.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-09-28. Available in OpenAccess from 2021-09-28.
000885795 909CO $$ooai:juser.fz-juelich.de:885795$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000885795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159565$$aForschungszentrum Jülich$$b3$$kFZJ
000885795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b4$$kFZJ
000885795 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000885795 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000885795 9130_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000885795 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000885795 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000885795 9141_ $$y2021
000885795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000885795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885795 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000885795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000885795 920__ $$lyes
000885795 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000885795 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000885795 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000885795 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000885795 980__ $$ajournal
000885795 980__ $$aVDB
000885795 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000885795 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000885795 980__ $$aI:(DE-588b)4597118-3
000885795 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000885795 980__ $$aUNRESTRICTED
000885795 9801_ $$aFullTexts