Home > Publications database > Reentrant Spin Glass and Large Coercive Field Observed in a Spin Integer Dimerized Honeycomb Lattice |
Journal Article | FZJ-2020-04092 |
; ; ; ; ; ; ;
2021
Wiley-VCH
Weinheim
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/26762 doi:10.1002/adfm.202004744
Abstract: 2D magnetic materials with dimerized honeycomb lattices can be treated as mixed‐spin square lattices, in which a quantum phase transition may occur to realize the Bose–Einstein condensation of magnons under reachable experimental conditions. However, this has never been successfully realized with integer spin centers. Herein, a spin integer (S = 2) dimerized honeycomb lattice in an iron(II)‐azido compound [Fe(4‐etpy)2(N3)2]n (FEN, 4‐etpy = 4‐ethylpyridine) is realized. Morphology characterization by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy spectroscopies show that the thinnest place of the sample is ≈13 nm, which is equal to ten layers of the compound. In contrast to the common magnetic properties of long‐range magnetic ordering, Mössbauer and polarized neutron scattering studies reveal that FEN exhibits a reentrant spin glass behavior owing to competing ferro‐ and antiferromagnetic exchange‐coupling interactions within the lattice. Two spin glass phases with disparate canting angles are characterized at 39 and 28 K, respectively. By using Curély's model, two exchange‐coupling constants (J1 = +35.8 cm−1 and J2 = −3.7 cm−1) can be simulated. Moreover, a very large coercive field of ≈1.9 Tesla is observed at 2 K, making FEN a “very hard” van der Waals 2D magnetic material.
Keyword(s): Magnetic Materials (1st) ; Magnetism (2nd)
![]() |
The record appears in these collections: |