000887945 001__ 887945
000887945 005__ 20240712113246.0
000887945 0247_ $$2doi$$a10.1039/D0RA08969A
000887945 0247_ $$2Handle$$a2128/26578
000887945 0247_ $$2altmetric$$aaltmetric:95424679
000887945 0247_ $$2WOS$$aWOS:000592897600063
000887945 037__ $$aFZJ-2020-04537
000887945 082__ $$a540
000887945 1001_ $$0P:(DE-Juel1)173951$$aLin, Jingjing$$b0
000887945 245__ $$aInfluence of the acid–base stoichiometry and residual water on the transport mechanism in a highly-Brønsted-acidic proton-conducting ionic liquid
000887945 260__ $$aLondon$$bRSC Publishing$$c2020
000887945 3367_ $$2DRIVER$$aarticle
000887945 3367_ $$2DataCite$$aOutput Types/Journal article
000887945 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608211223_29744
000887945 3367_ $$2BibTeX$$aARTICLE
000887945 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887945 3367_ $$00$$2EndNote$$aJournal Article
000887945 520__ $$aIn this study, Brønsted-acidic proton conducting ionic liquids are considered as potential new electrolytes for polymer membrane fuel cells with operating temperatures above 100 °C. N-Methyltaurine and trifluoromethanesulfonic acid (TfOH) were mixed at various stoichiometric ratios in order to investigate the influence of an acid or base excess. The proton conductivity and self-diffusion of the “neat” and with 6 wt% water samples were investigated by following electrochemical and NMR methods. The composition change in the complete species and the relative proton transport mechanism based on the NMR results are discussed in detail. During fuel cell operation, the presence of significant amounts of residual water is unavoidable. In PEFC electrolytes, the predominating proton transfer process depends on the cooperative mechanism, when PILs are fixed on the polymer matrix within the membrane. Due to the comparable acidity of the cation [2-Sema]+ and the hydroxonium cation, with excess N-methyltaurine or H2O in the compositions, fast proton exchange reactions between the protonated [2-Sema]+ cation, N-methyltaurine and H2O can be envisaged. Thus, an increasing ratio of cooperative proton transport could be observed. Therefore, for polymer membrane fuel cells operating at elevated temperatures, the highly acidic PILs with excess bases are promising candidates for future use as electrolytes.
000887945 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000887945 588__ $$aDataset connected to CrossRef
000887945 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b1$$eCorresponding author
000887945 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D0RA08969A$$gVol. 10, no. 69, p. 42596 - 42604$$n69$$p42596 - 42604$$tRSC Advances$$v10$$x2046-2069$$y2020
000887945 8564_ $$uhttps://juser.fz-juelich.de/record/887945/files/Invoice_INV_007748.pdf
000887945 8564_ $$uhttps://juser.fz-juelich.de/record/887945/files/d0ra08969a.pdf$$yOpenAccess
000887945 8767_ $$8INV_007748$$92020-11-17$$d2020-11-20$$eAPC$$jZahlung erfolgt$$zGBP 750 / Belegnr. 1200159874
000887945 909CO $$ooai:juser.fz-juelich.de:887945$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000887945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173951$$aForschungszentrum Jülich$$b0$$kFZJ
000887945 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)173951$$aRWTH Aachen$$b0$$kRWTH
000887945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b1$$kFZJ
000887945 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b1$$kRWTH
000887945 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000887945 9141_ $$y2020
000887945 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000887945 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2018$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887945 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000887945 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000887945 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000887945 920__ $$lyes
000887945 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000887945 9801_ $$aAPC
000887945 9801_ $$aFullTexts
000887945 980__ $$ajournal
000887945 980__ $$aVDB
000887945 980__ $$aUNRESTRICTED
000887945 980__ $$aI:(DE-Juel1)IEK-14-20191129
000887945 980__ $$aAPC
000887945 981__ $$aI:(DE-Juel1)IET-4-20191129