000888030 001__ 888030
000888030 005__ 20230111074319.0
000888030 0247_ $$2doi$$a10.1016/j.neuroimage.2020.117429
000888030 0247_ $$2ISSN$$a1053-8119
000888030 0247_ $$2ISSN$$a1095-9572
000888030 0247_ $$2Handle$$a2128/26248
000888030 0247_ $$2altmetric$$aaltmetric:91999725
000888030 0247_ $$2pmid$$apmid:33038538
000888030 0247_ $$2WOS$$aWOS:000600796800043
000888030 037__ $$aFZJ-2020-04608
000888030 082__ $$a610
000888030 1001_ $$0P:(DE-HGF)0$$aPark, Bo-yong$$b0$$eCorresponding author
000888030 245__ $$aSignal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function
000888030 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000888030 3367_ $$2DRIVER$$aarticle
000888030 3367_ $$2DataCite$$aOutput Types/Journal article
000888030 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605809695_32252
000888030 3367_ $$2BibTeX$$aARTICLE
000888030 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888030 3367_ $$00$$2EndNote$$aJournal Article
000888030 520__ $$aHuman cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.Keywords: Hidden Markov Model; diffusion MRI; functional dynamics; gradients; multimodal imaging; structural connectome.
000888030 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000888030 588__ $$aDataset connected to CrossRef
000888030 7001_ $$00000-0003-0574-6576$$aVos de Wael, Reinder$$b1
000888030 7001_ $$00000-0002-0190-4103$$aPaquola, Casey$$b2
000888030 7001_ $$0P:(DE-HGF)0$$aLarivière, Sara$$b3
000888030 7001_ $$0P:(DE-HGF)0$$aBenkarim, Oualid$$b4
000888030 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b5
000888030 7001_ $$0P:(DE-HGF)0$$aTavakol, Shahin$$b6
000888030 7001_ $$00000-0002-2917-1212$$aCruces, Raul R.$$b7
000888030 7001_ $$0P:(DE-HGF)0$$aLi, Qiongling$$b8
000888030 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b9
000888030 7001_ $$00000-0002-8880-9204$$aMargulies, Daniel S.$$b10
000888030 7001_ $$0P:(DE-HGF)0$$aMišić, Bratislav$$b11
000888030 7001_ $$0P:(DE-Juel1)136848$$aBzdok, Danilo$$b12
000888030 7001_ $$0P:(DE-HGF)0$$aSmallwood, Jonathan$$b13
000888030 7001_ $$00000-0001-9256-6041$$aBernhardt, Boris C.$$b14
000888030 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2020.117429$$gVol. 224, p. 117429 -$$p117429 -$$tNeuroImage$$v224$$x1053-8119$$y2021
000888030 8564_ $$uhttps://juser.fz-juelich.de/record/888030/files/1-s2.0-S1053811920309149-main.pdf$$yOpenAccess
000888030 909CO $$ooai:juser.fz-juelich.de:888030$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b9$$kFZJ
000888030 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000888030 9141_ $$y2021
000888030 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000888030 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888030 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2018$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888030 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2018$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000888030 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger
000888030 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000888030 920__ $$lyes
000888030 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000888030 980__ $$ajournal
000888030 980__ $$aVDB
000888030 980__ $$aUNRESTRICTED
000888030 980__ $$aI:(DE-Juel1)INM-7-20090406
000888030 9801_ $$aFullTexts