Journal Article FZJ-2020-04608

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Academic Press Orlando, Fla.

NeuroImage 224, 117429 - () [10.1016/j.neuroimage.2020.117429]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.Keywords: Hidden Markov Model; diffusion MRI; functional dynamics; gradients; multimodal imaging; structural connectome.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-11-19, last modified 2023-01-11


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)