001     888054
005     20240711085647.0
024 7 _ |a 10.1002/adem.202000529
|2 doi
024 7 _ |a 1438-1656
|2 ISSN
024 7 _ |a 1527-2648
|2 ISSN
024 7 _ |a 2128/26336
|2 Handle
024 7 _ |a altmetric:93074170
|2 altmetric
024 7 _ |a WOS:000577365900001
|2 WOS
037 _ _ |a FZJ-2020-04632
082 _ _ |a 660
100 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 0
|e Corresponding author
245 _ _ |a Tuning the Microstructure and Thickness of Ceramic Layers with Advanced Coating Technologies Using Zirconia as an Example
260 _ _ |a Frankfurt, M.
|c 2020
|b Deutsche Gesellschaft für Materialkunde
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606899993_687
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The properties of ceramic layers are not only related to the coating material but also—to a very high degree—the processing technology used. In particular, microstructure and thickness are key to the successful implementation of functional layers in application. This will be shown using yttria‐stabilized zirconia (YSZ) as an example, a highly versatile compound with high fracture toughness, high chemical and thermal stability, high biological compatibility, and high oxygen ion conductivity. For each application, specific microstructures are required, which can only be obtained by suitable processing. Herein, coating technologies for layers with thicknesses spanning the nanometer range up to several hundred micrometers, and from full density to tailored open porosity are focused. Wet processing routes, thin‐film deposition from the gas phase as well as thermal and plasma spraying are presented along with the resulting YSZ layers
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|x 0
|f POF III
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|x 1
|f POF III
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|x 2
|f POF III
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|x 3
|f POF III
536 _ _ |a DFG project 319339707 - Diffusionsgesteuerte Prozesse in polykristallinem Ceroxid: Kombinierte Wirkung von elektrischem Feld und mechanischer Belastung
|0 G:(GEPRIS)319339707
|c 319339707
|x 4
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dash, Apurv
|0 P:(DE-Juel1)171462
|b 1
|u fzj
700 1 _ |a Lenser, Christian
|0 P:(DE-Juel1)138081
|b 2
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 3
|u fzj
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 4
|u fzj
773 _ _ |a 10.1002/adem.202000529
|g p. 2000529 -
|0 PERI:(DE-600)2016980-2
|n 11
|p 2000529 -
|t Advanced engineering materials
|v 22
|y 2020
|x 1527-2648
856 4 _ |u https://juser.fz-juelich.de/record/888054/files/adem.202000529.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888054
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129633
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENG MATER : 2018
|d 2020-09-08
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21