000888139 001__ 888139
000888139 005__ 20220223143402.0
000888139 0247_ $$2doi$$a10.1002/hipo.23262
000888139 0247_ $$2ISSN$$a1050-9631
000888139 0247_ $$2ISSN$$a1098-1063
000888139 0247_ $$2Handle$$a2128/26638
000888139 0247_ $$2altmetric$$aaltmetric:91363145
000888139 0247_ $$2pmid$$a32986281
000888139 0247_ $$2WOS$$aWOS:000573167300001
000888139 037__ $$aFZJ-2020-04713
000888139 082__ $$a610
000888139 1001_ $$0P:(DE-HGF)0$$aLothmann, Kimberley$$b0
000888139 245__ $$aNew boundaries and dissociation of the mouse hippocampus along the dorsal‐ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities
000888139 260__ $$aNew York, NY [u.a.]$$bWiley$$c2021
000888139 3367_ $$2DRIVER$$aarticle
000888139 3367_ $$2DataCite$$aOutput Types/Journal article
000888139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645541108_17798
000888139 3367_ $$2BibTeX$$aARTICLE
000888139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888139 3367_ $$00$$2EndNote$$aJournal Article
000888139 520__ $$aIn rodents, gene‐expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3, GABAergic GABAA (including benzodiazepine binding sites), GABAB, dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal‐ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB. For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3, GABAA, D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal‐ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
000888139 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000888139 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000888139 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000888139 588__ $$aDataset connected to CrossRef
000888139 7001_ $$0P:(DE-HGF)0$$aDeitersen, Jana$$b1
000888139 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b2
000888139 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b3
000888139 7001_ $$00000-0002-6530-115X$$aHerold, Christina$$b4$$eCorresponding author
000888139 773__ $$0PERI:(DE-600)1498049-6$$a10.1002/hipo.23262$$gp. hipo.23262$$n1$$p56-78$$tHippocampus$$v31$$x1098-1063$$y2021
000888139 8564_ $$uhttps://juser.fz-juelich.de/record/888139/files/hipo.23262.pdf$$yOpenAccess
000888139 909CO $$ooai:juser.fz-juelich.de:888139$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000888139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131714$$aForschungszentrum Jülich$$b2$$kFZJ
000888139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b3$$kFZJ
000888139 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000888139 9141_ $$y2021
000888139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIPPOCAMPUS : 2018$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-02$$wger
000888139 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000888139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000888139 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888139 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000888139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000888139 920__ $$lyes
000888139 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000888139 980__ $$ajournal
000888139 980__ $$aVDB
000888139 980__ $$aI:(DE-Juel1)INM-1-20090406
000888139 980__ $$aUNRESTRICTED
000888139 9801_ $$aFullTexts