Journal Article FZJ-2020-04713

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
New boundaries and dissociation of the mouse hippocampus along the dorsal‐ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities

 ;  ;  ;  ;

2021
Wiley New York, NY [u.a.]

Hippocampus 31(1), 56-78 () [10.1002/hipo.23262]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: In rodents, gene‐expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3, GABAergic GABAA (including benzodiazepine binding sites), GABAB, dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal‐ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB. For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3, GABAA, D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal‐ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Research Program(s):
  1. 5251 - Multilevel Brain Organization and Variability (POF4-525) (POF4-525)
  2. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  3. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-11-23, last modified 2022-02-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)