001     888234
005     20210130010846.0
024 7 _ |a 10.1103/PhysRevApplied.13.044064
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/26304
|2 Handle
024 7 _ |a altmetric:82765188
|2 altmetric
024 7 _ |a WOS:000528534700004
|2 WOS
037 _ _ |a FZJ-2020-04783
082 _ _ |a 530
100 1 _ |a Wu, Yitong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Spin Filter for Polarized Electron Acceleration in Plasma Wakefields
260 _ _ |a College Park, Md. [u.a.]
|c 2020
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606460709_10660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a filter method to generate electron beams of high polarization from bubble and blow-out wakefield accelerators. The mechanism is based on the idea of identifying all electron-beam subsets with low polarization and filtering them out with an X-shaped slit placed immediately behind the plasma accelerator. To find these subsets we investigate the dependence between the initial azimuthal angle and the spin of single electrons during the trapping process. This dependence shows that transverse electron spins preserve their orientation during injection if they are initially aligned parallel or antiparallel to the local magnetic field. We derive a precise correlation of the local beam polarization as a function of the coordinate and the electron phase angle. Three-dimensional particle-in-cell simulations, incorporating classical spin dynamics, show that the beam polarization can be increased from 35% to about 80% after spin filtering. The injected flux is strongly restricted to preserve the beam polarization; for example, less than 1 kA in Wen et al. [Phys. Rev. Lett. 122, 214801 (2019)]. This limitation is removed by use of the proposed filter mechanism. The robustness of the method is discussed in terms of drive-beam fluctuations, jitters, the thickness of the filter, and the initial temperature. This idea marks an efficient and simple strategy to generate energetic polarized electron beams on the basis of wakefield acceleration.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ji, Liangliang
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Geng, Xuesong
|0 0000-0003-1181-6518
|b 2
700 1 _ |a Thomas, Johannes
|0 0000-0002-6237-0918
|b 3
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 4
700 1 _ |a Pukhov, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hützen, Anna
|0 P:(DE-Juel1)167417
|b 6
700 1 _ |a Zhang, Lingang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shen, Baifei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Li, Ruxin
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1103/PhysRevApplied.13.044064
|g Vol. 13, no. 4, p. 044064
|0 PERI:(DE-600)2760310-6
|n 4
|p 044064
|t Physical review applied
|v 13
|y 2020
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/888234/files/PhysRevApplied.13.044064.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888234
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167417
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2018
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21