Journal Article FZJ-2020-04783

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Spin Filter for Polarized Electron Acceleration in Plasma Wakefields

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
American Physical Society College Park, Md. [u.a.]

Physical review applied 13(4), 044064 () [10.1103/PhysRevApplied.13.044064]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We propose a filter method to generate electron beams of high polarization from bubble and blow-out wakefield accelerators. The mechanism is based on the idea of identifying all electron-beam subsets with low polarization and filtering them out with an X-shaped slit placed immediately behind the plasma accelerator. To find these subsets we investigate the dependence between the initial azimuthal angle and the spin of single electrons during the trapping process. This dependence shows that transverse electron spins preserve their orientation during injection if they are initially aligned parallel or antiparallel to the local magnetic field. We derive a precise correlation of the local beam polarization as a function of the coordinate and the electron phase angle. Three-dimensional particle-in-cell simulations, incorporating classical spin dynamics, show that the beam polarization can be increased from 35% to about 80% after spin filtering. The injected flux is strongly restricted to preserve the beam polarization; for example, less than 1 kA in Wen et al. [Phys. Rev. Lett. 122, 214801 (2019)]. This limitation is removed by use of the proposed filter mechanism. The robustness of the method is discussed in terms of drive-beam fluctuations, jitters, the thickness of the filter, and the initial temperature. This idea marks an efficient and simple strategy to generate energetic polarized electron beams on the basis of wakefield acceleration.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2020
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-6
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-11-26, last modified 2021-01-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)