| Home > Workflow collections > Publication Charges > Ionic Conductivity of Na 3 V 2 P 3 O 12 as a Function of Electrochemical Potential and its Impact on Battery Performance > print |
| 001 | 888288 | ||
| 005 | 20240711085648.0 | ||
| 024 | 7 | _ | |a 10.1002/batt.202000229 |2 doi |
| 024 | 7 | _ | |a 2128/27396 |2 Handle |
| 024 | 7 | _ | |a altmetric:94104134 |2 altmetric |
| 024 | 7 | _ | |a WOS:000593127800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04814 |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Lan, Tu |0 P:(DE-Juel1)171223 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Ionic Conductivity of Na 3 V 2 P 3 O 12 as a Function of Electrochemical Potential and its Impact on Battery Performance |
| 260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648124599_31092 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Na3V2(PO4)3 (NVP) is a promising electrode material for sodium‐ion batteries. However, many of its electrochemical properties like ionic conductivities have never been systematically studied. In the present paper, a battery cell with controlled morphology of NVP was prepared and the electrochemical impedance spectra were measured at various voltages. The ionic conductivity of NVP was calculated in dependence on applied potentials. NVP has a total conductivity of 1×10−6 S cm−1 at 2.9 V, which decreases to 8×10−8 S cm−1 at 3.5 V. This low conductivity, especially at higher voltages, influences the performance of batteries with an NVP electrode, especially by limiting the high‐rate cycling of solid‐state batteries. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Ma, Qianli |0 P:(DE-Juel1)129628 |b 1 |
| 700 | 1 | _ | |a Tsai, Chih‐Long |0 P:(DE-Juel1)156244 |b 2 |
| 700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 3 |
| 700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 4 |
| 773 | _ | _ | |a 10.1002/batt.202000229 |g p. batt.202000229 |0 PERI:(DE-600)2897248-X |n 3 |p 479-484 |t Batteries & supercaps |v 4 |y 2021 |x 2566-6223 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/888288/files/batt.202000229.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:888288 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171223 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129628 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156244 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129667 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161591 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrochemical Storage |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-32 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-32 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-32 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-32 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-32 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|