000888328 001__ 888328
000888328 005__ 20240712112834.0
000888328 0247_ $$2doi$$a10.1002/elsa.202000029
000888328 0247_ $$2Handle$$a2128/27963
000888328 0247_ $$2WOS$$aWOS:001138658600005
000888328 037__ $$aFZJ-2020-04847
000888328 082__ $$a540
000888328 1001_ $$0P:(DE-Juel1)171313$$aWirtz, Maike$$b0$$eCorresponding author
000888328 245__ $$aPolyethylene oxide‐Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 hybrid electrolytes: Lithium salt concentration and biopolymer blending
000888328 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co KGaA$$c2021
000888328 3367_ $$2DRIVER$$aarticle
000888328 3367_ $$2DataCite$$aOutput Types/Journal article
000888328 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623865065_12357
000888328 3367_ $$2BibTeX$$aARTICLE
000888328 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888328 3367_ $$00$$2EndNote$$aJournal Article
000888328 520__ $$aHybrid electrolytes are developed to meet the requirements of safety, performance, and manufacturing for electrolytes suitable for Li-ion batteries with Li-anodes. Recent challenges—in addition to these key properties—emphasize the importance of sustainability. While compromising between these three objectives, the currently available materials are still well below the targeted goals. Three important issues for the design of hybrid electrolytes are (i) the role of the morphology and surface state of the ceramic particles in the polymer matrix, (ii) the dependence of salt concentration and ionic conductivity and, (iii) the effects of substituting part of the polyethylene oxide (PEO), with biopolymers. Electrolyte films were prepared from PEO, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Li6.5La3Zr1.5Ta0.5O12 (LLZO:Ta), and biopolymers with varying contents of these components by a solution casting method. The films were analyzed with respect to structural and microstructural characteristics by DSC, Raman spectroscopy, and SEM. Ionic conductivity was evaluated by electrochemical impedance spectroscopy. Most interesting, when comparing films with LLZO:Ta versus without, the content of LiTFSI required for the maximum conductivity in the respective systems is different: a higher LiTFSI concentration is required for the former type. Overall, addition of LLZO:Ta as well as partial substitution of PEO by chitosan mesylate or cellulose acetate decrease the ionic conductivity. Thus—at least in the present approaches—a loss in performance is the drawback from attempts to enhance the safety by LLZO:Ta additions and sustainability by biopolymer blending of hybrid electrolytes.
000888328 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000888328 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000888328 588__ $$aDataset connected to CrossRef
000888328 7001_ $$00000-0002-1605-261X$$aLinhorst, Max$$b1
000888328 7001_ $$0P:(DE-Juel1)178865$$aVeelken, Philipp$$b2
000888328 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3
000888328 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4
000888328 7001_ $$00000-0001-6067-3205$$aMoerschbacher, Bruno M.$$b5
000888328 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger‐A.$$b6
000888328 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202000029$$n2$$pe2000029$$tElectrochemical science advances$$v1$$x2698-5977$$y2021
000888328 8564_ $$uhttps://juser.fz-juelich.de/record/888328/files/document.pdf
000888328 8564_ $$uhttps://juser.fz-juelich.de/record/888328/files/elsa.202000029.pdf$$yOpenAccess
000888328 8767_ $$d2020-12-01$$eAPC$$jDEAL$$lDEAL: Wiley$$zBelegnr. 1200164094
000888328 909CO $$ooai:juser.fz-juelich.de:888328$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$qOpenAPC_DEAL
000888328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171313$$aForschungszentrum Jülich$$b0$$kFZJ
000888328 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171313$$aRWTH Aachen$$b0$$kRWTH
000888328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178865$$aForschungszentrum Jülich$$b2$$kFZJ
000888328 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178865$$aRWTH Aachen$$b2$$kRWTH
000888328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000888328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000888328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
000888328 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
000888328 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000888328 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000888328 9141_ $$y2021
000888328 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888328 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888328 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000888328 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000888328 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000888328 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000888328 920__ $$lyes
000888328 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000888328 9801_ $$aAPC
000888328 9801_ $$aFullTexts
000888328 980__ $$ajournal
000888328 980__ $$aVDB
000888328 980__ $$aUNRESTRICTED
000888328 980__ $$aI:(DE-Juel1)IEK-9-20110218
000888328 980__ $$aAPC
000888328 981__ $$aI:(DE-Juel1)IET-1-20110218