001     888328
005     20240712112834.0
024 7 _ |a 10.1002/elsa.202000029
|2 doi
024 7 _ |a 2128/27963
|2 Handle
024 7 _ |a WOS:001138658600005
|2 WOS
037 _ _ |a FZJ-2020-04847
082 _ _ |a 540
100 1 _ |a Wirtz, Maike
|0 P:(DE-Juel1)171313
|b 0
|e Corresponding author
245 _ _ |a Polyethylene oxide‐Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 hybrid electrolytes: Lithium salt concentration and biopolymer blending
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH Verlag GmbH & Co KGaA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1623865065_12357
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hybrid electrolytes are developed to meet the requirements of safety, performance, and manufacturing for electrolytes suitable for Li-ion batteries with Li-anodes. Recent challenges—in addition to these key properties—emphasize the importance of sustainability. While compromising between these three objectives, the currently available materials are still well below the targeted goals. Three important issues for the design of hybrid electrolytes are (i) the role of the morphology and surface state of the ceramic particles in the polymer matrix, (ii) the dependence of salt concentration and ionic conductivity and, (iii) the effects of substituting part of the polyethylene oxide (PEO), with biopolymers. Electrolyte films were prepared from PEO, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Li6.5La3Zr1.5Ta0.5O12 (LLZO:Ta), and biopolymers with varying contents of these components by a solution casting method. The films were analyzed with respect to structural and microstructural characteristics by DSC, Raman spectroscopy, and SEM. Ionic conductivity was evaluated by electrochemical impedance spectroscopy. Most interesting, when comparing films with LLZO:Ta versus without, the content of LiTFSI required for the maximum conductivity in the respective systems is different: a higher LiTFSI concentration is required for the former type. Overall, addition of LLZO:Ta as well as partial substitution of PEO by chitosan mesylate or cellulose acetate decrease the ionic conductivity. Thus—at least in the present approaches—a loss in performance is the drawback from attempts to enhance the safety by LLZO:Ta additions and sustainability by biopolymer blending of hybrid electrolytes.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|x 0
|f POF IV
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Linhorst, Max
|0 0000-0002-1605-261X
|b 1
700 1 _ |a Veelken, Philipp
|0 P:(DE-Juel1)178865
|b 2
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 4
700 1 _ |a Moerschbacher, Bruno M.
|0 0000-0001-6067-3205
|b 5
700 1 _ |a Eichel, Rüdiger‐A.
|0 P:(DE-Juel1)156123
|b 6
773 _ _ |a 10.1002/elsa.202000029
|0 PERI:(DE-600)2984616-X
|n 2
|p e2000029
|t Electrochemical science advances
|v 1
|y 2021
|x 2698-5977
856 4 _ |u https://juser.fz-juelich.de/record/888328/files/document.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888328/files/elsa.202000029.pdf
909 C O |o oai:juser.fz-juelich.de:888328
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC_DEAL
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171313
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178865
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)178865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21