001     888346
005     20240625095124.0
024 7 _ |a 10.1016/j.chembiol.2020.08.005
|2 doi
024 7 _ |a 2451-9448
|2 ISSN
024 7 _ |a 2451-9456
|2 ISSN
024 7 _ |a 2128/26847
|2 Handle
024 7 _ |a altmetric:88870426
|2 altmetric
024 7 _ |a 32846115
|2 pmid
024 7 _ |a WOS:000592358500010
|2 WOS
037 _ _ |a FZJ-2020-04864
082 _ _ |a 570
100 1 _ |a Gomila, Alexandre M. J.
|0 0000-0003-0867-6171
|b 0
245 _ _ |a Photocontrol of Endogenous Glycine Receptors In Vivo
260 _ _ |a Amsterdam
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611165598_25382
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rustler, Karin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Maleeva, Galyna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nin-Hill, Alba
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wutz, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bautista-Barrufet, Antoni
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rovira, Xavier
|0 0000-0002-9764-9927
|b 6
700 1 _ |a Bosch, Miquel
|0 0000-0002-7103-2574
|b 7
700 1 _ |a Mukhametova, Elvira
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Petukhova, Elena
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ponomareva, Daria
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mukhamedyarov, Marat
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Peiretti, Franck
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 13
700 1 _ |a Rovira, Carme
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
700 1 _ |a König, Burkhard
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
700 1 _ |a Bregestovski, Piotr
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
700 1 _ |a Gorostiza, Pau
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1016/j.chembiol.2020.08.005
|g Vol. 27, no. 11, p. 1425 - 1433.e7
|0 PERI:(DE-600)2850144-5
|n 11
|p 1425 - 1433.e7
|t Cell chemical biology
|v 27
|y 2020
|x 2451-9456
856 4 _ |u https://juser.fz-juelich.de/record/888346/files/744391v1.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888346
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-0867-6171
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-9764-9927
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0002-7103-2574
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)169976
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL CHEM BIOL : 2018
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL CHEM BIOL : 2018
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21