000888460 001__ 888460
000888460 005__ 20240313103130.0
000888460 0247_ $$2arXiv$$aarXiv:2007.03367
000888460 0247_ $$2Handle$$a2128/30192
000888460 0247_ $$2altmetric$$aaltmetric:104986007
000888460 0247_ $$2pmid$$apmid:33914774
000888460 037__ $$aFZJ-2020-04928
000888460 1001_ $$0P:(DE-Juel1)179246$$aSpitzner, Franz Paul$$b0$$eCorresponding author
000888460 245__ $$aMR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity
000888460 260__ $$c2020
000888460 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1642083719_25571
000888460 3367_ $$2ORCID$$aWORKING_PAPER
000888460 3367_ $$028$$2EndNote$$aElectronic Article
000888460 3367_ $$2DRIVER$$apreprint
000888460 3367_ $$2BibTeX$$aARTICLE
000888460 3367_ $$2DataCite$$aOutput Types/Working Paper
000888460 520__ $$aHere we present our Python toolbox 'MR. Estimator' to reliably estimate the intrinsic timescale from electrophysiologal recordings of heavily subsampled systems. Originally intended for the analysis of time series from neuronal spiking activity, our toolbox is applicable to a wide range of systems where subsampling - the difficulty to observe the whole system in full detail - limits our capability to record. Applications range from epidemic spreading to any system that can be represented by an autoregressive process. In the context of neuroscience, the intrinsic timescale can be thought of as the duration over which any perturbation reverberates within the network; it has been used as a key observable to investigate a functional hierarchy across the primate cortex and serves as a measure of working memory. It is also a proxy for the distance to criticality and quantifies a system's dynamic working point.
000888460 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888460 588__ $$aDataset connected to arXivarXiv
000888460 7001_ $$0P:(DE-Juel1)179499$$aDehning, Jonas$$b1
000888460 7001_ $$0P:(DE-HGF)0$$aWilting, J.$$b2
000888460 7001_ $$0P:(DE-HGF)0$$aHagemann, A.$$b3
000888460 7001_ $$0P:(DE-HGF)0$$aNeto, J. P.$$b4
000888460 7001_ $$0P:(DE-HGF)0$$aZierenberg, J.$$b5
000888460 7001_ $$0P:(DE-HGF)0$$aPriesemann, V.$$b6
000888460 8564_ $$uhttps://juser.fz-juelich.de/record/888460/files/2007.03367.pdf$$yOpenAccess
000888460 909CO $$ooai:juser.fz-juelich.de:888460$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179246$$aForschungszentrum Jülich$$b0$$kFZJ
000888460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179499$$aForschungszentrum Jülich$$b1$$kFZJ
000888460 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888460 9141_ $$y2021
000888460 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888460 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000888460 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000888460 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000888460 9801_ $$aFullTexts
000888460 980__ $$apreprint
000888460 980__ $$aVDB
000888460 980__ $$aUNRESTRICTED
000888460 980__ $$aI:(DE-Juel1)INM-6-20090406
000888460 980__ $$aI:(DE-Juel1)IAS-6-20130828
000888460 980__ $$aI:(DE-Juel1)INM-10-20170113
000888460 981__ $$aI:(DE-Juel1)IAS-6-20130828