Preprint FZJ-2020-04928

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity

 ;  ;  ;  ;  ;  ;

2020

This record in other databases:    

Please use a persistent id in citations:

Abstract: Here we present our Python toolbox 'MR. Estimator' to reliably estimate the intrinsic timescale from electrophysiologal recordings of heavily subsampled systems. Originally intended for the analysis of time series from neuronal spiking activity, our toolbox is applicable to a wide range of systems where subsampling - the difficulty to observe the whole system in full detail - limits our capability to record. Applications range from epidemic spreading to any system that can be represented by an autoregressive process. In the context of neuroscience, the intrinsic timescale can be thought of as the duration over which any perturbation reverberates within the network; it has been used as a key observable to investigate a functional hierarchy across the primate cortex and serves as a measure of working memory. It is also a proxy for the distance to criticality and quantifies a system's dynamic working point.


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)

Appears in the scientific report 2021
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Document types > Reports > Preprints
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-04, last modified 2024-03-13