001     888460
005     20240313103130.0
024 7 _ |a arXiv:2007.03367
|2 arXiv
024 7 _ |a 2128/30192
|2 Handle
024 7 _ |a altmetric:104986007
|2 altmetric
024 7 _ |a pmid:33914774
|2 pmid
037 _ _ |a FZJ-2020-04928
100 1 _ |a Spitzner, Franz Paul
|0 P:(DE-Juel1)179246
|b 0
|e Corresponding author
245 _ _ |a MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1642083719_25571
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Here we present our Python toolbox 'MR. Estimator' to reliably estimate the intrinsic timescale from electrophysiologal recordings of heavily subsampled systems. Originally intended for the analysis of time series from neuronal spiking activity, our toolbox is applicable to a wide range of systems where subsampling - the difficulty to observe the whole system in full detail - limits our capability to record. Applications range from epidemic spreading to any system that can be represented by an autoregressive process. In the context of neuroscience, the intrinsic timescale can be thought of as the duration over which any perturbation reverberates within the network; it has been used as a key observable to investigate a functional hierarchy across the primate cortex and serves as a measure of working memory. It is also a proxy for the distance to criticality and quantifies a system's dynamic working point.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Dehning, Jonas
|0 P:(DE-Juel1)179499
|b 1
700 1 _ |a Wilting, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hagemann, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Neto, J. P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zierenberg, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Priesemann, V.
|0 P:(DE-HGF)0
|b 6
856 4 _ |u https://juser.fz-juelich.de/record/888460/files/2007.03367.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888460
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179246
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179499
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21