000888477 001__ 888477
000888477 005__ 20210130010946.0
000888477 0247_ $$2doi$$a10.1101/2020.12.03.410688
000888477 0247_ $$2Handle$$a2128/26373
000888477 0247_ $$2altmetric$$aaltmetric:95467507
000888477 037__ $$aFZJ-2020-04941
000888477 041__ $$aEnglish
000888477 082__ $$a570
000888477 1001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b0$$eFirst author
000888477 245__ $$aTractography density affects whole-brain structural architecture and resting-state dynamical modeling
000888477 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2020
000888477 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1607331216_30461
000888477 3367_ $$2ORCID$$aWORKING_PAPER
000888477 3367_ $$028$$2EndNote$$aElectronic Article
000888477 3367_ $$2DRIVER$$apreprint
000888477 3367_ $$2BibTeX$$aARTICLE
000888477 3367_ $$2DataCite$$aOutput Types/Working Paper
000888477 520__ $$aDynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models and search for the optimal parameter settings. On this way, we simulate the functional connectivity by systems of coupled oscillators, where the underlying network is constructed from the empirical SC and evaluate the performance of the models for varying parameters of data processing. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We explored free parameters of the considered models and found the optimal parameter configurations, where the model dynamics closely replicates the empirical data. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying number of WBT streamlines such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.
000888477 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888477 588__ $$aDataset connected to CrossRef
000888477 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1
000888477 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b2$$eCorresponding author
000888477 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2020.12.03.410688$$tbioRxiv beta$$y2020
000888477 8564_ $$uhttps://juser.fz-juelich.de/record/888477/files/Jung-2020-bioRxiv-DOI.pdf$$yOpenAccess
000888477 909CO $$ooai:juser.fz-juelich.de:888477$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b0$$kFZJ
000888477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000888477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b2$$kFZJ
000888477 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888477 9141_ $$y2020
000888477 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888477 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888477 920__ $$lyes
000888477 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000888477 980__ $$apreprint
000888477 980__ $$aVDB
000888477 980__ $$aUNRESTRICTED
000888477 980__ $$aI:(DE-Juel1)INM-7-20090406
000888477 9801_ $$aFullTexts