Preprint FZJ-2020-04941

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Tractography density affects whole-brain structural architecture and resting-state dynamical modeling

 ;  ;

2020
Cold Spring Harbor Laboratory, NY Cold Spring Harbor

bioRxiv beta () [10.1101/2020.12.03.410688]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models and search for the optimal parameter settings. On this way, we simulate the functional connectivity by systems of coupled oscillators, where the underlying network is constructed from the empirical SC and evaluate the performance of the models for varying parameters of data processing. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We explored free parameters of the considered models and found the optimal parameter configurations, where the model dynamics closely replicates the empirical data. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying number of WBT streamlines such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)

Appears in the scientific report 2020
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-7
Document types > Reports > Preprints
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-06, last modified 2021-01-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)